1. Use Dodgson condensation to prove the Vandermonde determinant formula

$$
\operatorname{det}(M)=\prod_{1 \leq i<j \leq n}\left(x_{j}-x_{i}\right)
$$

where M is the n-by- n matrix whose i, j th entry (for $1 \leq i, j \leq n$) is x_{j}^{i-1}.
2. Using Dodgson condensation, Lindstrom's lemma, and the bijection between tilings and routings discussed in class, prove that for all $a, b, c \geq$ 0 , the number of ways to tile an a, b, c, a, b, c semiregular hexagon with unit rhombuses is equal to

$$
\frac{H(a+b+c) H(a) H(b) H(c)}{H(a+b) H(a+c) H(b+c)}
$$

where $H(0)=H(1)=1$ and $H(n)=1!2!3!\cdots(n-1)$! for $n>1$.
For both of these problems, you should use only the properties of the determinant that were discussed in lecture (or that you prove yourself).

