1. Using the combinatorial definition of the determinant, prove that for all n-by- n matrices $A, B, \operatorname{det}(A B)=\operatorname{det}(A) \operatorname{det}(B)$.
2. Use Lindstrom's lemma, the interpretation of domino tilings as routings, and a computer, in order to count the domino tilings of an 8 -by- 8 square, as well as the domino tilings of an 8 -by- 8 square from which two (non-opposite) corners have been removed.
