1. Use the recurrence for $p(n)$ to compute the last digit of $p(n)$ for every n between 1 and 1000. Can you make any conjectures about the relationship between the last digit of n and the last digit of $p(n)$?
2. Let $F(0)=1$ and recursively define $F(n)=F(n-1)+F(n-3)-$ $F(n-6)-F(n-10)+F(n-15)+F(n-21)--++\ldots$ for all $n>0$, where terms of the form $F(n-k)$ are to be ignored once $k \geq n$. There exists a set S of positive integers such that $F(n)$ equals the number of partitions of n into parts belonging to S. Find S (conjecturally).
