1. We consider directed animals on the modified square lattice that has an extra edge joining (i, j) to $(i+1, j+1)$ for all i, j. A subset S of the first quadrant is a directed animal on this lattice if for every point (i, j) in S there is a path from $(0,0)$ to (i, j) in S via steps of the form $(+1,0),(0,+1),(+1,+1)$. Let a_{n} be the number of directed animals on this lattice having n elements, so that $a_{1}=1, a_{2}=3, a_{3}=10$, etc. Mimic the method discussed in class for the ordinary square lattice to derive a formula for the generating function $\sum_{n=1}^{\infty} a_{n}$, and use this to obtain a formula for a_{n} itself as well as a formula for $\lim _{n \rightarrow \infty} a_{n}^{1 / n}$.
2. (a) The mapping from the ring of formal power series to itself that sends $f(x)$ to $1+x^{2}[f(x)]^{3}$ has a unique fixed point. Conjecture a formula for the coefficients of this formal power series. (Hint: Try to express the ratio of the coefficients of $x^{2 n}$ and $x^{2 n-2}$ as a rational function of n.)
(b) There exist Laurent series

$$
g(x)=x^{-1}-\frac{1}{2}-\frac{3}{8} x-\frac{1}{2} x^{2}-\ldots
$$

and

$$
g(-x)=-x^{-1}-\frac{1}{2}+\frac{3}{8} x-\frac{1}{2} x^{2}+\ldots
$$

that are also fixed under that mapping. Find the first dozen coefficients of g and conjecture a formula for the coefficient of x^{n}.

