1. Define the diagonal of a two-variable generating function

$$
F(x, y)=\sum_{m, n} a_{m, n} x^{m} y^{n}
$$

as the generating function

$$
D(t)=\sum_{n} a_{n, n} t^{n}
$$

It is a theorem (which we will not have time to prove) that the diagonal of any two-variable rational generating function is an algebraic generating function. Verify this claim in the particular case $F(x, y)=$ $1 /(1-x-y)=\sum_{m, n} \frac{(m+n)!}{m!n!} x^{m} y^{n}$ by expressing the diagonal $D(t)$ as an algebraic function. Give as good a justification of your formula as you can.
We know that $\frac{1-\sqrt{1-4 t}}{2 t}=\sum_{n=0}^{\infty}\left(\binom{2 n}{n} /(n+1)\right) t^{n}$; if we multiply by t and differentiate, we cancel the $n+1$ in the denominator, obtaining $(1-4 t)^{-1 / 2}=\sum_{n=0}^{\infty}\binom{2 n}{n} t^{n}$.
2. Call a sequence of +1 's 0 's, and -1 's favorable if every partial sum is non-negative and the total sum is 0 . Let $f(n)$ be the number of favorable sequences of length n. Express the generating function $\sum_{n} f(n) x^{n}$ as an algebraic function of x.
Let $F(x)$ be the generating function for all favorable sequences, and $P(x)$ be the generating function for just the primitive ones, where a favorable sequence is called primitive iff it cannot be written as a concatenation of two or more non-empty favorable sequences. We have $F(x)=1+P(x) F(x)$ on general principles. Furthermore, $P(x)=$ $x+x^{2} F(x)$, since a primitive favorable sequence is either a sequence of length 1 whose sole term is 0 or else a +1 followed by a favorable sequence followed by a -1 . Hence

$$
F(x)=1+\left(x+x^{2} F(x)\right) F(x),
$$

which gives the quadratic equation $x^{2} F(x)^{2}+(x-1) F(x)+1=0$. Solving, we get

$$
F(x)=\frac{1-x-\sqrt{1-2 x-3 x^{2}}}{2 x^{2}}
$$

