
Math 192r, Problem Set #5: Solutions

1. There is a unique polynomial of degree d such that f(k) = 2k for k =
0, 1, ..., d. What is f(d+ 1)? What is f(−1)?

Suppose g(k) is a polynomial of degree m ≥ 1, so that its sequence
of mth differences is constant. If we define G(k) = g(k) + g(k − 1) +
. . .+ g(1) for all k ≥ 1, then the first differences of G are the “zeroeth”
differences of g, the second differences of G are the first differences of g,
and so on, so that the sequence of m+ 1st difference of G is constant,
implying that G(k) is given by a polynomial of degree m+ 1 in k. This
last assertion is true for g(k−1)+g(k−2)+ . . .+g(0)+1 as well, since
it differs from G(k) by the substitution of k− 1 for k and the addition
of the constant 1.

In particular, we see that if f is a polynomial of degree d − 1 with
f(k) = 2k for 0 ≤ k ≤ d − 1, then the sum F (k) = f(k − 1) + f(k −
2) + . . .+ f(0) + 1 defines a polynomial function of degree d, and it is
easy to see that if f satisfies the property that characterizes fd−1, F
satisfies the property that characterizes fd. Hence we have

fd(k) = fd−1(k − 1) + fd−1(k − 2) + . . .+ fd−1(0) + 1

for all k ≥ 0 (not just 0 ≤ k ≤ d), with the proviso that in the case
k = 0, the only term on the right hand side is the 1.

Putting k = d + 1, we have fd(d + 1) = fd−1(d) + fd−1(d − 1) + . . . +
fd−1(0) + 1 = fd−1(d) + 2d−1 + . . . + 1 + 1 = fd−1(d) + 2d. That is,
the sequence f0(1), f1(2), f2(3), . . . , has the sequence 1, 2, 4, . . . as its
sequence of first differences, from which it follows (say by induction)
that fd−1(d) = 2d − 1.

On the other hand, for each fixed d the relation fd(k) − fd(k − 1) =
fd−1(k−1) holds for all k, since it holds for all positive k and since both
sides of the equation are polynomials. Hence we have fd(0)−fd(−1) =
fd−1(−1). Rewriting this as fd(−1) = fd(0) − fd−1(−1) and using the
fact that fd(0) = 1, we have fd(−1) = 1 − fd−1(−1), from which it
follows (say by induction) that fd(−1) = (−1)d.

Note that you don’t need to have an explicit formula for fd(k) in order
to solve this problem!
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2. One basis for the space of polynomials of degree less than d is the
monomial basis 1, t, t2, ..., td−1. Another is the shifted monomial basis
1, (t+ 1), (t+ 1)2, ..., (t+ 1)d−1. Call these bases u1, ..., ud and v1, ..., vd
respectively.

(a) Derive a formula for the entries of the change-of-basis matrix M
expressing the ui’s as linear combinations of the vj’s.

We seek a d-by-d matrix M that, when multiplied on the right
by the column vector ei (with a 1 in the ith position and a 0 ev-
erywhere else), gives a column vector (c1, c2, . . . , cd)

T such that
ui = c1v1 + c2v2 + . . . + cdvd. Now ui = ti−1 = ((t + 1) −
1)i−1 =

∑i−1
j=0

(
i−1
j

)
(t + 1)j(−1)i−1−j =

∑i−1
j=0

(
i−1
j

)
vj+1(−1)i−1−j =∑i

j=1

(
i−1
j−1

)
vj(−1)i−j, so cj = (−1)i−j

(
i−1
j−1

)
(which gets interpreted

as 0 for j > i). Hence

Mj,i =

{
(−1)i−j

(
i−1
j−1

)
for 1 ≤ j ≤ i ≤ n,

0 otherwise.

(Note: I didn’t specify whether the vectors were to be treated
as row-vectors or column-vectors, or equivalently, whether the
change-of-basis matrix was supposed to be applied on the right
or on the left. If you adopted the row-vector approach, you would
find that the answers you got for parts (a) and (b) are reversed,
relative to mine.)

(b) Derive a formula for the entries of the change-of-basis matrix N
expressing the vj’s as linear combinations of the ui’s.

This one is even easier: vj = (t+1)j−1 =
∑j−1
i=0

(
j−1
i

)
ti =

∑j
i=1

(
j−1
i−1

)
ui

so

Ni,j =

{ (
j−1
i−1

)
for 1 ≤ i ≤ j ≤ n,

0 otherwise.

(c) From the description of M and N as basis-change matrices, we
know that MN = NM = I. Forgetting for the moment what M
and N mean, rewrite the assertions MN = NM = I as bino-
mial coefficient identities, and prove them either algebraically or
bijectively.
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The assertion MN = I can be rewritten as
∑
jMi,jNj,k = δi,k,

where δi,j is 1 if i = j and 0 otherwise. That is,
∑

(−1)j−i
(
j−1
i−1

)(
k−1
j−1

)
=

δ(i, k) where the sum is over all j such that i ≤ j ≤ k. For conve-
nience, we shift indices and write this as∑

(−1)j−i
(
j

i

)(
k

j

)
= δ(i, k)

where the sum is still over all j such that i ≤ j ≤ k.

Algebraic proof: The sum in question is the coefficient of xk−i in
the product of

(
i
i

)
−
(
i+1
i

)
x+

(
i+2
i

)
x2− . . .+ (−1)k−i

(
k
i

)
xk−i + . . .

and
(
k
k

)
+
(

k
k−1

)
x+

(
k
k−2

)
x2 + . . .+

(
k
i

)
xk−i + . . .+

(
k
0

)
xk. The first

factor can be recognized as (1+x)−(i+1) (by the binomial theorem)
and the latter can be recognized as (1 + x)k. So the product is
(1 + x)k−i−1. The coefficient of xk−i in the formal power series
expansion of (1 + x)k−i−1 is 0 as long as k− i− 1 is non-negative,
since in that case (1 + x)k−i−1 is just a polynomial of degree less
than k− i. However, when i = k, (1 +x)k−i−1 becomes the formal
power series (1+x)−1 = 1−x+x2−x3+. . ., in which the coefficient
of xk−i is just the constant term 1.

Combinatorial proof: Given a set C of size k,
∑

(−1)j−i
(
j
i

)(
k
j

)
counts the number of ways to choose a subset B ⊂ C of size j and a
subset A ⊂ B of size i, where a choice of A,B,C counts as positive
or negative according to whether the number of elements of B that
are not in C is even or odd. If we hold the subset A fixed and do
a signed enumeration of the sets B satisfying A ⊂ B ⊂ C, we find
that the signed count is 1 if A = C and 0 otherwise. (Reason:
This is just like signed enumeration of the subsets of C \A, where
a set counts as positive or negative according to whether it has an
even or odd number of elements.) If i = k, there is exactly one
set A, namely C itself, whose aggregate contribution is non-zero,
and in this case the aggregate contribution is 1; whereas if i < k,
all the aggregate contributions vanish. This proves the identity.

The assertion NM = I can be rewritten as
∑
j Ni,jMj,k = δi,k, that

is,
(
j−1
i−1

)
(−1)k−j

(
k−1
j−1

)
= δi,j. Re-indexing, we write (−1)k−j

(
j
i

)(
k
j

)
=

δi,j. The proofs are similar to what appeared above.
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