Math 192r, Problem Set \#5: Solutions

1. There is a unique polynomial of degree d such that $f(k)=2^{k}$ for $k=$ $0,1, \ldots, d$. What is $f(d+1)$? What is $f(-1)$?
Suppose $g(k)$ is a polynomial of degree $m \geq 1$, so that its sequence of m th differences is constant. If we define $G(k)=g(k)+g(k-1)+$ $\ldots+g(1)$ for all $k \geq 1$, then the first differences of G are the "zeroeth" differences of g, the second differences of G are the first differences of g, and so on, so that the sequence of $m+1$ st difference of G is constant, implying that $G(k)$ is given by a polynomial of degree $m+1$ in k. This last assertion is true for $g(k-1)+g(k-2)+\ldots+g(0)+1$ as well, since it differs from $G(k)$ by the substitution of $k-1$ for k and the addition of the constant 1 .
In particular, we see that if f is a polynomial of degree $d-1$ with $f(k)=2^{k}$ for $0 \leq k \leq d-1$, then the sum $F(k)=f(k-1)+f(k-$ $2)+\ldots+f(0)+1$ defines a polynomial function of degree d, and it is easy to see that if f satisfies the property that characterizes f_{d-1}, F satisfies the property that characterizes f_{d}. Hence we have

$$
f_{d}(k)=f_{d-1}(k-1)+f_{d-1}(k-2)+\ldots+f_{d-1}(0)+1
$$

for all $k \geq 0$ (not just $0 \leq k \leq d$), with the proviso that in the case $k=0$, the only term on the right hand side is the 1 .
Putting $k=d+1$, we have $f_{d}(d+1)=f_{d-1}(d)+f_{d-1}(d-1)+\ldots+$ $f_{d-1}(0)+1=f_{d-1}(d)+2^{d-1}+\ldots+1+1=f^{d-1}(d)+2^{d}$. That is, the sequence $f_{0}(1), f_{1}(2), f_{2}(3), \ldots$, has the sequence $1,2,4, \ldots$ as its sequence of first differences, from which it follows (say by induction) that $f_{d-1}(d)=2^{d}-1$.
On the other hand, for each fixed d the relation $f_{d}(k)-f_{d}(k-1)=$ $f_{d-1}(k-1)$ holds for all k, since it holds for all positive k and since both sides of the equation are polynomials. Hence we have $f_{d}(0)-f_{d}(-1)=$ $f_{d-1}(-1)$. Rewriting this as $f_{d}(-1)=f_{d}(0)-f_{d-1}(-1)$ and using the fact that $f_{d}(0)=1$, we have $f_{d}(-1)=1-f_{d-1}(-1)$, from which it follows (say by induction) that $f_{d}(-1)=(-1)^{d}$.
Note that you don't need to have an explicit formula for $f_{d}(k)$ in order to solve this problem!
2. One basis for the space of polynomials of degree less than d is the monomial basis $1, t, t^{2}, \ldots, t^{d-1}$. Another is the shifted monomial basis $1,(t+1),(t+1)^{2}, \ldots,(t+1)^{d-1}$. Call these bases u_{1}, \ldots, u_{d} and v_{1}, \ldots, v_{d} respectively.
(a) Derive a formula for the entries of the change-of-basis matrix M expressing the u_{i} 's as linear combinations of the v_{j} 's.
We seek a d-by- d matrix M that, when multiplied on the right by the column vector e_{i} (with a 1 in the i th position and a 0 everywhere else), gives a column vector $\left(c_{1}, c_{2}, \ldots, c_{d}\right)^{T}$ such that $u_{i}=c_{1} v_{1}+c_{2} v_{2}+\ldots+c_{d} v_{d}$. Now $u_{i}=t^{i-1}=((t+1)-$ $1)^{i-1}=\sum_{j=0}^{i-1}\binom{i-1}{j}(t+1)^{j}(-1)^{i-1-j}=\sum_{j=0}^{i-1}\binom{i-1}{j} v_{j+1}(-1)^{i-1-j}=$ $\sum_{j=1}^{i}\binom{i-1}{j-1} v_{j}(-1)^{i-j}$, so $c_{j}=(-1)^{i-j}\binom{i-1}{j-1}$ (which gets interpreted as 0 for $j>i$). Hence

$$
M_{j, i}=\left\{\begin{array}{cl}
(-1)^{i-j}\binom{i-1}{j-1} & \text { for } 1 \leq j \leq i \leq n, \\
0 & \text { otherwise }
\end{array}\right.
$$

(Note: I didn't specify whether the vectors were to be treated as row-vectors or column-vectors, or equivalently, whether the change-of-basis matrix was supposed to be applied on the right or on the left. If you adopted the row-vector approach, you would find that the answers you got for parts (a) and (b) are reversed, relative to mine.)
(b) Derive a formula for the entries of the change-of-basis matrix N expressing the v_{j} 's as linear combinations of the u_{i} 's.
This one is even easier: $v_{j}=(t+1)^{j-1}=\sum_{i=0}^{j-1}\binom{j-1}{i} t^{i}=\sum_{i=1}^{j}\binom{j-1}{i-1} u_{i}$ so

$$
N_{i, j}=\left\{\begin{array}{cl}
\binom{j-1}{i-1} & \text { for } 1 \leq i \leq j \leq n, \\
0 & \text { otherwise }
\end{array}\right.
$$

(c) From the description of M and N as basis-change matrices, we know that $M N=N M=I$. Forgetting for the moment what M and N mean, rewrite the assertions $M N=N M=I$ as binomial coefficient identities, and prove them either algebraically or bijectively.

The assertion $M N=I$ can be rewritten as $\sum_{j} M_{i, j} N_{j, k}=\delta_{i, k}$, where $\delta_{i, j}$ is 1 if $i=j$ and 0 otherwise. That is, $\sum(-1)^{j-i}\binom{j-1}{i-1}\binom{k-1}{j-1}=$ $\delta(i, k)$ where the sum is over all j such that $i \leq j \leq k$. For convenience, we shift indices and write this as

$$
\sum(-1)^{j-i}\binom{j}{i}\binom{k}{j}=\delta(i, k)
$$

where the sum is still over all j such that $i \leq j \leq k$.
Algebraic proof: The sum in question is the coefficient of x^{k-i} in the product of $\binom{i}{i}-\binom{i+1}{i} x+\binom{i+2}{i} x^{2}-\ldots+(-1)^{k-i}\binom{k}{i} x^{k-i}+\ldots$ and $\binom{k}{k}+\binom{k}{k-1} x+\binom{k}{k-2} x^{2}+\ldots+\binom{k}{i} x^{k-i}+\ldots+\binom{k}{0} x^{k}$. The first factor can be recognized as $(1+x)^{-(i+1)}$ (by the binomial theorem) and the latter can be recognized as $(1+x)^{k}$. So the product is $(1+x)^{k-i-1}$. The coefficient of x^{k-i} in the formal power series expansion of $(1+x)^{k-i-1}$ is 0 as long as $k-i-1$ is non-negative, since in that case $(1+x)^{k-i-1}$ is just a polynomial of degree less than $k-i$. However, when $i=k,(1+x)^{k-i-1}$ becomes the formal power series $(1+x)^{-1}=1-x+x^{2}-x^{3}+\ldots$, in which the coefficient of x^{k-i} is just the constant term 1 .
Combinatorial proof: Given a set C of size $k, \sum(-1)^{j-i}\binom{j}{i}\binom{k}{j}$ counts the number of ways to choose a subset $B \subset C$ of size j and a subset $A \subset B$ of size i, where a choice of A, B, C counts as positive or negative according to whether the number of elements of B that are not in C is even or odd. If we hold the subset A fixed and do a signed enumeration of the sets B satisfying $A \subset B \subset C$, we find that the signed count is 1 if $A=C$ and 0 otherwise. (Reason: This is just like signed enumeration of the subsets of $C \backslash A$, where a set counts as positive or negative according to whether it has an even or odd number of elements.) If $i=k$, there is exactly one set A, namely C itself, whose aggregate contribution is non-zero, and in this case the aggregate contribution is 1 ; whereas if $i<k$, all the aggregate contributions vanish. This proves the identity.
The assertion $N M=I$ can be rewritten as $\sum_{j} N_{i, j} M_{j, k}=\delta_{i, k}$, that is, $\binom{j-1}{i-1}(-1)^{k-j}\binom{k-1}{j-1}=\delta_{i, j}$. Re-indexing, we write $(-1)^{k-j}\binom{j}{i}\binom{k}{j}=$ $\delta_{i, j}$. The proofs are similar to what appeared above.

