Math 192r, Problem Set #5: Solutions

1. There is a unique polynomial of degree d such that f(k) = 2% for k =
0,1,...,d. Whatis f(d+1)? What is f(—1)?

Suppose g(k) is a polynomial of degree m > 1, so that its sequence
of mth differences is constant. If we define G(k) = g(k) + g(k — 1) +

..+g(1) for all k£ > 1, then the first differences of G are the “zeroeth”
differences of g, the second differences of GG are the first differences of g,
and so on, so that the sequence of m + 1st difference of G is constant,
implying that G(k) is given by a polynomial of degree m+1 in k. This
last assertion is true for g(k—1)+g(k—2)+...4+¢(0)+ 1 as well, since
it differs from G(k) by the substitution of £ — 1 for k£ and the addition
of the constant 1.

In particular, we see that if f is a polynomial of degree d — 1 with
f(k) = 2% for 0 < k < d—1, then the sum F(k) = f(k — 1)+ f(k —
2) 4+ ...+ f(0) + 1 defines a polynomial function of degree d, and it is
easy to see that if f satisfies the property that characterizes f;_1, F
satisfies the property that characterizes f;. Hence we have

fa(k) = fa—1 (k= 1) + fa—1 (B —2) + ...+ fa—1(0) + 1

for all & > 0 (not just 0 < k < d), with the proviso that in the case
k = 0, the only term on the right hand side is the 1.

Putting k = d + 1, we have fy(d+ 1) = f4_1(d) + far(d—1)+ ... +
fa1(0)+1 = faq(d)+2 + ...+ 1+ 1= fil(d) + 2% That is,
the sequence fo(1), f1(2), f2(3),..., has the sequence 1,2,4,... as its
sequence of first differences, from which it follows (say by induction)
that fy_1(d) = 2% — 1.

On the other hand, for each fixed d the relation fy(k) — fa(k — 1) =
fa—1(k—1) holds for all k, since it holds for all positive k and since both
sides of the equation are polynomials. Hence we have f;(0) — fa(—1) =
fa—1(—1). Rewriting this as f4(—1) = f4(0) — f4—1(—1) and using the
fact that f4(0) = 1, we have fq(—1) = 1 — fq—1(—1), from which it
follows (say by induction) that fy(—1) = (—1).

Note that you don’t need to have an explicit formula for f;(k) in order
to solve this problem!



2. One basis for the space of polynomials of degree less than d is the
monomial basis 1,t,t2,....t7" 1. Another is the shifted monomial basis
L(t+1),(t+1)2 ..., (t+ 1)t Call these bases uy, ..., uq and vy, ..., vq
respectively.

(a) Derive a formula for the entries of the change-of-basis matriz M
expressing the u;’s as linear combinations of the v;’s.

We seek a d-by-d matrix M that, when multiplied on the right
by the column vector e; (with a 1 in the ith position and a 0 ev-
erywhere else), gives a column vector (cy,cs,...,cq)7 such that
u; = civ; + cavg + ...+ cqug. Now u; = 78 = ((t+ 1) —
D = 5 () @+ D (=) = S5 (o (C1) T =

‘L (;j) v; (1), s0 ¢; = (1) (;j) (which gets interpreted
as 0 for 7 > 7). Hence

1
0 otherwise.

M.

i—j(i—1 o

M:{ (-1)i() for1<j<i<n,

(Note: T didn’t specify whether the vectors were to be treated
as row-vectors or column-vectors, or equivalently, whether the
change-of-basis matrix was supposed to be applied on the right
or on the left. If you adopted the row-vector approach, you would
find that the answers you got for parts (a) and (b) are reversed,
relative to mine.)

(b) Derive a formula for the entries of the change-of-basis matriz N
expressing the v;’s as linear combinations of the u;’s.
This one is even easier: v; = (t4+1)71 = S77) (jzl)ti == (g:i)ul
SO

j—1 . .
Nij = (i—l) for 1 S.Z <j=<mn,
, 0 otherwise.

(¢) From the description of M and N as basis-change matrices, we
know that MN = NM = I. Forgetting for the moment what M
and N mean, rewrite the assertions MN = NM = I as bino-
mial coefficient identities, and prove them either algebraically or
bijectively.



The assertion MN = I can be rewritten as >; M; ;N;; = i e
where 0, j is 1 if i = j and 0 otherwise. That is, Z(—l)j_i<j_1) (k_l) =

i—1) -1
(i, k) where the sum is over all j such that ¢ < j < k. For conve-

nience, we shift indices and write this as

(- 1y (J) (’;) — §(i. )

where the sum is still over all j such that ¢« < 5 < k.

Algebraic proof: The sum in ?uestion is the coefficient of 2%~ in

the product of (Z’) — (“;1):6 + ZJf) 2 — 4 (—=1)F (l:) hig
and (:) + (1:1)374' (kg)ﬂ +...+ (’;)xk_i +...+ (lg)a:k The first
factor can be recognized as (1+x)~(+ (by the binomial theorem)
and the latter can be recognized as (1 + z)*. So the product is
(1 + 2)*="1. The coefficient of z*~% in the formal power series
expansion of (1 +z)~~1 is 0 as long as k — i — 1 is non-negative,
since in that case (1 + x)k~*~1 is just a polynomial of degree less
than k —i. However, when i = k, (14 x)*~*~! becomes the formal
power series (1+2)™! = 1—z+z?—12%+. . ., in which the coefficient
of =% is just the constant term 1.

Combinatorial proof: Given a set C' of size k, S (—1)7" (J) (k)

counts the number of ways to choose a subset B C C of size j elmd] a
subset A C B of size i, where a choice of A, B, C' counts as positive
or negative according to whether the number of elements of B that
are not in C' is even or odd. If we hold the subset A fixed and do
a signed enumeration of the sets B satisfying A C B C (', we find
that the signed count is 1 if A = C and 0 otherwise. (Reason:
This is just like signed enumeration of the subsets of C'\ A, where
a set counts as positive or negative according to whether it has an
even or odd number of elements.) If i = k, there is exactly one
set A, namely C' itself, whose aggregate contribution is non-zero,
and in this case the aggregate contribution is 1; whereas if ¢ < k,
all the aggregate contributions vanish. This proves the identity.

The assertion NM = [ can be rewritten as >=; N; ;M = di i, that

is, (j_1>(—1)k_j (I;:l) = 0, ;. Re-indexing, we write (—1)¥~J (J) (k) =

1—1 1 i) \J
0; ;. The proofs are similar to what appeared above.



