Math 192r, Problem Set \#4: Solutions

Let a_{n} be the number of domino tilings of a 3-by-2n rectangle, and let b_{n} be the number of domino tilings of a 3-by- $(2 n+1)$ rectangle from which a corner square has been removed. We showed in class that $a_{n}=a_{n-1}+2 b_{n-1}$ and $b_{n}=a_{n-1}+3 b_{n-1}$ for all $n \geq 2$.

1. Introduce

$$
A(x)=a_{0}+a_{1} x+a_{2} x^{2}+\ldots
$$

and

$$
B(x)=b_{0}+b_{1} x+b_{x} x^{2}+\ldots .
$$

Write down two algebraic relations between $A(x)$ and $B(x)$ that represent the two recurrence relations (taking care to incorporate the boundary conditions correctly), and solve for $A(x)$ and $B(x)$.
The coefficient of x^{n} in $A(x)-x A(x)-2 x B(x)$ is $a_{n}-a_{n-1}-2 b_{n-1}=$ 0 when $n \geq 1$ and is $a_{0}=1$ when $n=0$; the coefficient of x^{n} in $B(x)-x A(x)-3 x B(x)$ is $b_{n}-a_{n-1}-3 b_{n-1}=0$ when $n \geq 1$ and is $b_{0}=1$ when $n=0$. So we have $(1-x) A(x)-2 x B(x)=1$ and $x A(x)+(3 x-1) B(x)=-1$. Solving, we get

$$
A(x)=\frac{1-x}{1-4 x+x^{2}}
$$

and

$$
B(x)=\frac{1}{1-4 x+x^{2}} .
$$

The roots of the denominator of $A(x)$ are $2 \pm \sqrt{3}$, whose reciprocals are one another; so the coefficients of $A(x)$ can be expressed in the form $a_{n}=C \alpha^{n}+D \beta^{n}$ where $\alpha=2+\sqrt{3}$ and $\beta=2-\sqrt{3}$ and where C, D are some undetermined constants (calculated in problem 2).
2. We also saw in class that

$$
\binom{a_{n}}{b_{n}}=\left(\begin{array}{ll}
1 & 2 \\
1 & 3
\end{array}\right)^{n}\binom{1}{1} .
$$

Use linear algebra to derive a formula for a_{n}.

The eigenvalues of the matrix are the roots of $(\lambda-1)(\lambda-3)-(-2)(-1)=$ 0 , or $\lambda^{2}-4 \lambda+1$. Hence for any row vector v and column vector w (both of length 2), the scalar $v M^{n} w$ must be of the form $C \alpha^{n}+D \beta^{n}$, where α, β are the roots of $\lambda^{2}-4 \lambda+1=0($ say $\alpha=2+\sqrt{3}$ and $\beta=2-\sqrt{3})$ and the coefficients C, D are determined by the choice of v and w. Setting $v=[1,0]$ and $w=[1,1]^{T}$, we see that a_{n} must be given by such a formula. To solve for C and D, set $n=0$ and $n=1$ to get $C=\frac{1}{2}+\frac{\sqrt{3}}{6}$ and $D=\frac{1}{2}-\frac{\sqrt{3}}{6}$. Hence

$$
a_{n}=\left(\frac{1}{2}+\frac{\sqrt{3}}{6}\right)(2+\sqrt{3})^{n}+\left(\frac{1}{2}-\frac{\sqrt{3}}{6}\right)(2-\sqrt{3})^{n}
$$

