1. Let F_{n} be the nth Fibonacci number, as Wilf indexes them (with $F_{0}=$ $F_{1}=1, F_{2}=2$, etc.). Give a simple homogeneous linear recurrence relation satisfied by the sequence whose nth term is...
(a) $n F_{n}$:

This sequence is given by a formula of the form $A n r^{n}+B n s^{n}$ (since $F_{n}=A r^{n}+B s^{n}$), where r and s are the roots of $t^{2}-t-1=0$. So we need a polynomial which has r as a double root and s as a double root. $\left(t^{2}-t-1\right)^{2}=t^{4}-2 t^{3}-t^{2}+2 t+1$ will certainly do. So, writing the nth term of the given sequence as f_{n}, we have $f_{n+4}=2 f_{n+3}+f_{n+2}-2 f_{n+1}-f_{n}$.
Alternatively, we can use generating functions: If $F_{0}+F_{1} x+$ $F_{2} x^{2}+F_{3} x^{3}+\ldots=1 /\left(1-x-x^{2}\right)$, then, differentiating, we have $1 F_{1}+2 F_{2} x+3 F_{3} x^{2}+\ldots=(1+2 x) /\left(1-x-x^{2}\right)^{2}$, and the occurrence of $\left(1-x-x^{2}\right)^{2}=1-2 x-x^{2}+2 x^{3}+x^{4}$ in the denominator tells us that the sequence must satisfy the recurrence $f_{n+4}=2 f_{n+3}+$ $f_{n+2}-2 f_{n+1}-f_{n}$.
(b) $1 F_{1}+2 F_{2}+\ldots+n F_{n}$:

If we apply the operator $T-I$ to this sequence, we get the sequence considered in part (a). So the sequence f_{n} whose nth term is $1 F_{1}+\ldots+n F_{n}$ is annihilated by the operator $(T-I)\left(T^{4}-2 T^{3}-\right.$ $\left.T^{2}+2 T+I\right)=T^{5}-3 T^{4}+T^{3}+3 T^{2}-T-I$.
Alternatively, we can use generating functions, and multiply the formal power series $(1+2 x) /\left(1-x-x^{2}\right)^{2}$ (considered in the previous sub-problem) by $1+x+x^{2}+\ldots=1 /(1-x)$. The coefficients of the resulting formal power series are easily seen to be partial sums of exactly the desired kind. So the new denominator is $(1-x)\left(1-x-x^{2}\right)^{2}=1-3 x+x^{2}+3 x^{3}-x^{4}-x^{5}$, which tells us that the sequence must satisfy the recurrence $f_{n+5}=$ $3 f_{n+4}-f_{n+3}-3 f_{n+2}+f_{n+1}+f_{n}$.
(c) $n F_{1}+(n-1) F_{2}+\ldots+2 F_{n-1}+F_{n}$: This sum is the coefficient of x^{n} in the product of the formal power series $F_{1} x+F_{2} x^{2}+\ldots+F_{n} x^{n}+\ldots$ with the formal power series $1+2 x+3 x^{2}+\ldots+n x^{n-1}+\ldots$. The
former is given by a formal power series with denominator $1-x-x^{2}$ and the latter is given by a formal power series with denominator $(1-x)^{2}$; when we multiply them, we get a formal power series with denominator $\left(1-x-x^{2}\right)(1-x)^{2}=1-3 x+2 x^{2}+x^{3}-x^{4}$, so the sequence satisfies the recurrence $f_{n+4}=3 f_{n+3}-2 f_{n+2}-f_{n+1}+f_{n}$.
(d) F_{n} when n is odd, and 2^{n} when n is even: We saw in class that the Fibonacci numbers satisfy the recurrence $f_{n+4}=3 f_{n+2}-f_{n}$. On the other hand, the powers of two satisfy the recurrence $f_{n+2}=$ $4 f_{n}$. Since any multiple of $T^{4}-3 T^{2}+I$ annihilates the former, and any multiple of $T^{2}-4 I$ annihilates the latter, an operator that annihilates both sequences (while only looking two, four, or six terms earlier) is $\left(T^{4}-3 T^{2}+I\right)\left(T^{2}-4 I\right)=T^{6}-7 T^{4}+13 T^{2}-4 I$. So $f_{n+6}=7 f_{n+4}-13 f_{n+2}+4 f_{n}$.
2. The sequence of polynomials $f_{n}(x)$ in problem 2 of problem set 1 satisfies a second-order linear recurrence relation with coefficients that are Laurent polynomials in x.
(a) Find it, and prove that it is correct.

We will prove that

$$
\begin{equation*}
f_{n+1}=\left(2+1 / x^{2}\right) f_{n}-f_{n-1} \tag{1}
\end{equation*}
$$

for all $n \geq 2$. Recall that the defining recurrence was

$$
\begin{equation*}
f_{n+1}=\left(f_{n}^{2}+1\right) / f_{n-1} . \tag{2}
\end{equation*}
$$

Rather than prove that the sequence of polynomials defined by equation (2) (with the initial conditions $f_{0}=f_{1}=x$) satisfies (1), we will prove that the sequence of polynomials defined by equation (1) (with the initial conditions $f_{0}=f_{1}=x$) satisfies (2). For the rest of this proof, f_{0}, f_{1}, \ldots denotes the sequence given by recurrence (1).
To show that (2) holds, we must prove that $f_{n+1} f_{n-1}=f_{n}^{2}+1$. Replacing f_{n+1} by $\left(2+1 / x^{2}\right) f_{n}-f_{n-1}$ in this equation, we can rewrite the desired equality in the form

$$
\begin{equation*}
f_{n}^{2}+f_{n-1}^{2}+1=\left(2+1 / x^{2}\right) f_{n} f_{n-1} . \tag{3}
\end{equation*}
$$

We will prove this by induction. If $n=1$, it is simple to check the truth of (3) directly. Otherwise, we may assume as an induction hypothesis that

$$
\begin{equation*}
f_{n-1}^{2}+f_{n-2}^{2}+1=\left(2+1 / x^{2}\right) f_{n-1} f_{n-2} \tag{4}
\end{equation*}
$$

To derive (3) from (4), substitute $f_{n}=\left(2+1 / x^{2}\right) f_{n-1}-f_{n-2}$ into (3) to obtain

$$
\begin{aligned}
& \left(\left(2+1 / x^{2}\right) f_{n-1}-f_{n-2}\right)^{2}+f_{n-1}^{2}+1= \\
& \left(2+1 / x^{2}\right)\left(\left(2+1 / x^{2}\right) f_{n-1}-f_{n-2}\right) f_{n-1} ;
\end{aligned}
$$

expanding and cancelling, we get

$$
-2\left(2+1 / x^{2}\right) f_{n-1} f_{n-2}+f_{n-2}^{2}+f_{n-1}^{2}+1=-\left(2+1 / x^{2}\right) f_{n-1} f_{n-2}
$$

or

$$
f_{n-2}^{2}+f_{n-1}^{2}+1=\left(2+1 / x^{2}\right) f_{n-1} f_{n-2}
$$

which is (4). That is, (3) is algebraically equivalent to (4), subject to the substitution $f_{n}=\left(2+1 / x^{2}\right) f_{n-1}-f_{n-2}$. Hence (4) implies (3), and the claim follows by induction.
(It may also be possible to prove that the sequence defined by (2) satisfies (1), but I don't see a way to do it.)
(b) Express $\sum_{n=0}^{\infty} f_{n}(x) y^{n}$ as a rational function of x and y.

Call this generating function $F(x, y)$. Multiplying $F(x, y)=x+$ $x y+\ldots$ by $1-\left(2+1 / x^{2}\right) y+y^{2}$ and using the recurrence relation proved above, we have $\left(1-\left(2+1 / x^{2}\right) y+y^{2}\right) F(x, y)=x-(x+1 / x) y$, so that

$$
F(x, y)=\frac{x-(x+1 / x) y}{1-\left(2+1 / x^{2}\right) y+y^{2}}
$$

We can check this: If we tell Maple

```
expand(taylor((x-(x+1/x)*y)/(1-(2+1/x^2)*y+y^2),y,5));
```

we get the expected answer.
(Technical aside: The above calculation is rigorously understood to be taking place in the ring of formal power series in the variable y in which the coefficient ring is the ring of all rational functions
in the variable x. It can be shown that in this ring, any element whose constant term is 1 (a priori the constant term could be any rational function of x) has a multiplicative inverse, so the quotient makes sense. Indeed, it would also be acceptable to write the generating function as

$$
\frac{x^{2}-\left(x^{2}+1\right) y}{x^{2}-\left(2 x^{2}+1\right) y+x^{2} y^{2}}
$$

because the denominator of this expression, too, has a multiplicative inverse in the ring of formal power series being considered.)

Incidentally, with recurrence (1) in hand it is easy to prove that

$$
f_{n}=\sum_{k=1}^{n}\binom{n-2+k}{2 k-2} x^{3-2 k} .
$$

Indeed, assuming (for purposes of induction) that this formula holds for f_{n-1} and f_{n-2}, we have

$$
\begin{aligned}
f_{n}= & \left(2+1 / x^{2}\right) f_{n-1}-f_{n-2} \\
= & 2 \sum_{k=1}^{n-1}\binom{n-3+k}{2 k-2} x^{3-2 k}+\sum_{k=1}^{n-1}\binom{n-3+k}{2 k-2} x^{1-2 k} \\
& -\sum_{k=1}^{n-2}\binom{n-4+k}{2 k-2} x^{3-2 k} \\
= & \sum_{k=1}^{n-1} 2\binom{n-3+k}{2 k-2} x^{3-2 k}+\sum_{k=2}^{n}\binom{n-4+k}{2 k-4} x^{3-2 k} \\
& -\sum_{k=1}^{n-2}\binom{n-4+k}{2 k-2} x^{3-2 k} \\
= & \sum_{k=1}^{n}\binom{n-2+k}{2 k-2} x^{3-2 k} .
\end{aligned}
$$

The last equality requires some checking, coefficient by coefficient, and the analysis splits into several cases. For $k=1$, we have

$$
2\binom{n-2}{0}-\binom{n-3}{0}=\binom{n-1}{0}
$$

which is just $2-1=1$; for $k=n-1$, we have

$$
2\binom{2 n-4}{2 n-4}+\binom{2 n-5}{2 n-6}=\binom{2 n-3}{2 n-4}
$$

which is just $2+(2 n-5)=(2 n-3)$; for $k=n$, we have

$$
\binom{2 n-4}{2 n-4}=\binom{2 n-2}{2 n-2}
$$

which is just $1=1$; and for $1<k<n-1$, we have

$$
2\binom{n-3+k}{2 k-2}+\binom{n-4+k}{2 k-4}-\binom{n-4+k}{2 k-2}=\binom{n-2+k}{2 k-2}
$$

which can be proved by successively substituting

$$
\begin{aligned}
& \binom{n-2+k}{2 k-2}=\binom{n-3+k}{2 k-2}+\binom{n-3+k}{2 k-3} \\
& \binom{n-3+k}{2 k-2}=\binom{n-4+k}{2 k-2}+\binom{n-4+k}{2 k-3}
\end{aligned}
$$

and

$$
\binom{n-3+k}{2 k-3}=\binom{n-4+k}{2 k-3}+\binom{n-4+k}{2 k-4}
$$

