
Math 192r, Problem Set #3: Solutions

1. Let Fn be the nth Fibonacci number, as Wilf indexes them (with F0 =
F1 = 1, F2 = 2, etc.). Give a simple homogeneous linear recurrence
relation satisfied by the sequence whose nth term is...

(a) nFn:

This sequence is given by a formula of the form Anrn+Bnsn (since
Fn = Arn + Bsn), where r and s are the roots of t2 − t − 1 = 0.
So we need a polynomial which has r as a double root and s as a
double root. (t2 − t − 1)2 = t4 − 2t3 − t2 + 2t + 1 will certainly
do. So, writing the nth term of the given sequence as fn, we have
fn+4 = 2fn+3 + fn+2 − 2fn+1 − fn.

Alternatively, we can use generating functions: If F0 + F1x +
F2x

2 + F3x
3 + . . . = 1/(1− x− x2), then, differentiating, we have

1F1+2F2x+3F3x
2+. . . = (1+2x)/(1−x−x2)2, and the occurrence

of (1− x− x2)2 = 1− 2x− x2 + 2x3 + x4 in the denominator tells
us that the sequence must satisfy the recurrence fn+4 = 2fn+3 +
fn+2 − 2fn+1 − fn.

(b) 1F1 + 2F2 + ...+ nFn:

If we apply the operator T−I to this sequence, we get the sequence
considered in part (a). So the sequence fn whose nth term is
1F1 + ...+ nFn is annihilated by the operator (T − I)(T 4− 2T 3−
T 2 + 2T + I) = T 5 − 3T 4 + T 3 + 3T 2 − T − I.

Alternatively, we can use generating functions, and multiply the
formal power series (1 + 2x)/(1− x− x2)2 (considered in the pre-
vious sub-problem) by 1 + x + x2 + . . . = 1/(1 − x). The co-
efficients of the resulting formal power series are easily seen to
be partial sums of exactly the desired kind. So the new denom-
inator is (1 − x)(1 − x − x2)2 = 1 − 3x + x2 + 3x3 − x4 − x5,
which tells us that the sequence must satisfy the recurrence fn+5 =
3fn+4 − fn+3 − 3fn+2 + fn+1 + fn.

(c) nF1 +(n−1)F2 + ...+2Fn−1 +Fn: This sum is the coefficient of xn

in the product of the formal power series F1x+F2x
2+...+Fnx

n+...
with the formal power series 1 + 2x+ 3x2 + ...+ nxn−1 + .... The
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former is given by a formal power series with denominator 1−x−x2

and the latter is given by a formal power series with denominator
(1−x)2; when we multiply them, we get a formal power series with
denominator (1− x− x2)(1− x)2 = 1− 3x+ 2x2 + x3− x4, so the
sequence satisfies the recurrence fn+4 = 3fn+3−2fn+2−fn+1 +fn.

(d) Fn when n is odd, and 2n when n is even: We saw in class that the
Fibonacci numbers satisfy the recurrence fn+4 = 3fn+2 − fn. On
the other hand, the powers of two satisfy the recurrence fn+2 =
4fn. Since any multiple of T 4−3T 2+I annihilates the former, and
any multiple of T 2 − 4I annihilates the latter, an operator that
annihilates both sequences (while only looking two, four, or six
terms earlier) is (T 4− 3T 2 + I)(T 2− 4I) = T 6− 7T 4 + 13T 2− 4I.
So fn+6 = 7fn+4 − 13fn+2 + 4fn.

2. The sequence of polynomials fn(x) in problem 2 of problem set 1 satis-
fies a second-order linear recurrence relation with coefficients that are
Laurent polynomials in x.

(a) Find it, and prove that it is correct.

We will prove that

fn+1 = (2 + 1/x2)fn − fn−1 (1)

for all n ≥ 2. Recall that the defining recurrence was

fn+1 = (f 2
n + 1)/fn−1. (2)

Rather than prove that the sequence of polynomials defined by
equation (2) (with the initial conditions f0 = f1 = x) satisfies
(1), we will prove that the sequence of polynomials defined by
equation (1) (with the initial conditions f0 = f1 = x) satisfies (2).
For the rest of this proof, f0, f1, . . . denotes the sequence given by
recurrence (1).

To show that (2) holds, we must prove that fn+1fn−1 = f 2
n + 1.

Replacing fn+1 by (2 + 1/x2)fn − fn−1 in this equation, we can
rewrite the desired equality in the form

f 2
n + f 2

n−1 + 1 = (2 + 1/x2)fnfn−1. (3)
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We will prove this by induction. If n = 1, it is simple to check the
truth of (3) directly. Otherwise, we may assume as an induction
hypothesis that

f 2
n−1 + f 2

n−2 + 1 = (2 + 1/x2)fn−1fn−2. (4)

To derive (3) from (4), substitute fn = (2 + 1/x2)fn−1− fn−2 into
(3) to obtain

((2 + 1/x2)fn−1 − fn−2)2 + f 2
n−1 + 1 =

(2 + 1/x2)((2 + 1/x2)fn−1 − fn−2)fn−1;

expanding and cancelling, we get

−2(2 + 1/x2)fn−1fn−2 + f 2
n−2 + f 2

n−1 + 1 = −(2 + 1/x2)fn−1fn−2

or
f 2
n−2 + f 2

n−1 + 1 = (2 + 1/x2)fn−1fn−2,

which is (4). That is, (3) is algebraically equivalent to (4), subject
to the substitution fn = (2 + 1/x2)fn−1− fn−2. Hence (4) implies
(3), and the claim follows by induction.

(It may also be possible to prove that the sequence defined by (2)
satisfies (1), but I don’t see a way to do it.)

(b) Express
∑∞
n=0 fn(x)yn as a rational function of x and y.

Call this generating function F (x, y). Multiplying F (x, y) = x +
xy+ . . . by 1− (2 + 1/x2)y+ y2 and using the recurrence relation
proved above, we have (1−(2+1/x2)y+y2)F (x, y) = x−(x+1/x)y,
so that

F (x, y) =
x− (x+ 1/x)y

1− (2 + 1/x2)y + y2
.

We can check this: If we tell Maple

expand(taylor((x-(x+1/x)*y)/(1-(2+1/x^2)*y+y^2),y,5));

we get the expected answer.

(Technical aside: The above calculation is rigorously understood
to be taking place in the ring of formal power series in the variable
y in which the coefficient ring is the ring of all rational functions
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in the variable x. It can be shown that in this ring, any element
whose constant term is 1 (a priori the constant term could be any
rational function of x) has a multiplicative inverse, so the quotient
makes sense. Indeed, it would also be acceptable to write the
generating function as

x2 − (x2 + 1)y

x2 − (2x2 + 1)y + x2y2

because the denominator of this expression, too, has a multiplica-
tive inverse in the ring of formal power series being considered.)

Incidentally, with recurrence (1) in hand it is easy to prove that

fn =
n∑
k=1

(
n− 2 + k

2k − 2

)
x3−2k.

Indeed, assuming (for purposes of induction) that this formula holds for fn−1

and fn−2, we have

fn = (2 + 1/x2)fn−1 − fn−2

= 2
n−1∑
k=1

(
n− 3 + k

2k − 2

)
x3−2k +

n−1∑
k=1

(
n− 3 + k

2k − 2

)
x1−2k

−
n−2∑
k=1

(
n− 4 + k

2k − 2

)
x3−2k

=
n−1∑
k=1

2

(
n− 3 + k

2k − 2

)
x3−2k +

n∑
k=2

(
n− 4 + k

2k − 4

)
x3−2k

−
n−2∑
k=1

(
n− 4 + k

2k − 2

)
x3−2k

=
n∑
k=1

(
n− 2 + k

2k − 2

)
x3−2k.

The last equality requires some checking, coefficient by coefficient, and the
analysis splits into several cases. For k = 1, we have

2

(
n− 2

0

)
−
(
n− 3

0

)
=

(
n− 1

0

)
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which is just 2− 1 = 1; for k = n− 1, we have

2

(
2n− 4

2n− 4

)
+

(
2n− 5

2n− 6

)
=

(
2n− 3

2n− 4

)

which is just 2 + (2n− 5) = (2n− 3); for k = n, we have(
2n− 4

2n− 4

)
=

(
2n− 2

2n− 2

)

which is just 1 = 1; and for 1 < k < n− 1, we have

2

(
n− 3 + k

2k − 2

)
+

(
n− 4 + k

2k − 4

)
−
(
n− 4 + k

2k − 2

)
=

(
n− 2 + k

2k − 2

)
,

which can be proved by successively substituting(
n− 2 + k

2k − 2

)
=

(
n− 3 + k

2k − 2

)
+

(
n− 3 + k

2k − 3

)
,

(
n− 3 + k

2k − 2

)
=

(
n− 4 + k

2k − 2

)
+

(
n− 4 + k

2k − 3

)
,

and (
n− 3 + k

2k − 3

)
=

(
n− 4 + k

2k − 3

)
+

(
n− 4 + k

2k − 4

)
.
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