Math 192r, Problem Set #3: Solutions

1. Let F,, be the nth Fibonacci number, as Wilf indexes them (with Fy =
Fy =1, F, = 2, etc.). Give a simple homogeneous linear recurrence
relation satisfied by the sequence whose nth term is...

(a)

nk,:
This sequence is given by a formula of the form Anr™+ Bns™ (since
= Ar" + Bs™), where r and s are the roots of t* —¢t — 1 = 0.
So we need a polynomial which has r as a double root and s as a
double root. (t? —t —1)? = t* — 2¢3 — ¢ + 2t + 1 will certainly
do. So, writing the nth term of the given sequence as f,, we have
fn+4 =2fny3 + fn+2 - 2fn+1 — Jn-
Alternatively, we can use generating functions: If Fy + Fiz +
For? + Fsz® + ... = 1/(1 — x — 2?), then, differentiating, we have
1B +2F0+3F32%+. .. = (1+22)/(1—2—2%)?, and the occurrence
of (1—xz—2%)?2=1-2z—2*+22%+2* in the denominator tells
us that the sequence must satisfy the recurrence f, 14 = 2,13 +
fn+2 - 2fn+1 - fn
1Fy +2F, + ... + nF,:
If we apply the operator T'—1I to this sequence, we get the sequence
considered in part (a). So the sequence f,, whose nth term is
LFy + ...+ nF, is annihilated by the operator (T — I)(T* — 273 —
T>+ 2T +1)=T5 31" +T3+37*-T — I
Alternatively, we can use generating functions, and multiply the
formal power series (1 + 2z)/(1 —x — 2%)? (considered in the pre-
vious sub-problem) by 1 +z + 2?> +... = 1/(1 — z). The co-
efficients of the resulting formal power series are easily seen to
be partial sums of exactly the desired kind. So the new denom-
inator is (1 —z)(1 — 2 —2%)? = 1 — 3z + 2* + 323 — 2% — 25,
which tells us that the sequence must satisfy the recurrence f,, 5 =
3fn+4 - fn+3 - 3fn+2 + fn+1 + fn-

nfi+(n—1)Fy+...4+2F, 1+ F,: This sum is the coefficient of 2™
in the product of the formal power series Fiz+ Fox?+...+ F,a"+...
with the formal power series 1 + 2z + 322 + ... + na" ' 4+ .... The
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former is given by a formal power series with denominator 1—x—a2
and the latter is given by a formal power series with denominator
(1—x)?; when we multiply them, we get a formal power series with
denominator (1 —z —2%)(1 —2)? =1 — 3z + 222 + 2% — 2%, so the
sequence satisfies the recurrence f, 14 = 3fuis—2fni2 — fus1+ fu

(d) F,, whenn is odd, and 2™ when n is even: We saw in class that the
Fibonacci numbers satisfy the recurrence f,.4 = 3fi2 — fn. On
the other hand, the powers of two satisfy the recurrence f, o =
4f,. Since any multiple of 7 — 372+ I annihilates the former, and
any multiple of 72 — 41 annihilates the latter, an operator that
annihilates both sequences (while only looking two, four, or six
terms earlier) is (T* — 3T+ I)(T?% —41) = T — TT* + 13T* — 41.
So fn+6 = 7fn+4 - 13fn+2 + 4fn-

2. The sequence of polynomials f,(x) in problem 2 of problem set 1 satis-
fies a second-order linear recurrence relation with coefficients that are
Laurent polynomaials in x.

(a) Find it, and prove that it is correct.
We will prove that

f7L+1 = (2 + 1/x2>fn - fnfl (1>
for all n > 2. Recall that the defining recurrence was
Sovr = (f3+ 1)/ far. (2)

Rather than prove that the sequence of polynomials defined by
equation (2) (with the initial conditions fy = fi; = z) satisfies
(1), we will prove that the sequence of polynomials defined by
equation (1) (with the initial conditions fy = f; = x) satisfies (2).
For the rest of this proof, fy, fi,... denotes the sequence given by
recurrence (1).

To show that (2) holds, we must prove that f,1f,1 = f2+ 1.
Replacing fn41 by (2 + 1/22)f, — fa_1 in this equation, we can
rewrite the desired equality in the form

f3+f371+1 = (2+1/x2)fnfn—1- (3)
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We will prove this by induction. If n = 1, it is simple to check the
truth of (3) directly. Otherwise, we may assume as an induction
hypothesis that

2 4R+ 1=(241/2) fat fas. (4)

To derive (3) from (4), substitute f, = (2+ 1/2?) f,_1 — fn_2 into
(3) to obtain

(241/2%) foc1 — fa2)?+ f2 1+ 1=
(24 1/2*)((2 4 1/2°) fae1 — fa-2)fa-1;

expanding and cancelling, we get

—22+ 1/2®) faifoo + froo+ fog 1= —(241/2%) furi fus

or

faat foia+1=(241/2°) furfu-s,
which is (4). That is, (3) is algebraically equivalent to (4), subject
to the substitution f,, = (2+1/2?)f,_1 — fu_o. Hence (4) implies
(3), and the claim follows by induction.

(It may also be possible to prove that the sequence defined by (2)
satisfies (1), but I don’t see a way to do it.)

Ezpress >0° o fo(x)y™ as a rational function of x and y.

Call this generating function F(x,y). Multiplying F(x,y) = = +
zy+...by 1 —(2+1/2?)y + y? and using the recurrence relation
proved above, we have (1—(2+1/2?)y+y?)F(z,y) = z—(z+1/x)y,
so that

r—(z+1/2)y
F(z,y) = ( 2/) 5
1-(@2+1/2*)y+y
We can check this: If we tell Maple
expand (taylor ((x-(x+1/x)*y)/(1-(2+1/x"2) *y+y~2) ,y,5)) ;

we get the expected answer.

(Technical aside: The above calculation is rigorously understood
to be taking place in the ring of formal power series in the variable
y in which the coefficient ring is the ring of all rational functions
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in the variable x. It can be shown that in this ring, any element
whose constant term is 1 (a priori the constant term could be any
rational function of x) has a multiplicative inverse, so the quotient
makes sense. Indeed, it would also be acceptable to write the
generating function as

22— (22 4+ 1)y
2?2 — (222 4+ 1)y + x%y?

because the denominator of this expression, too, has a multiplica-
tive inverse in the ring of formal power series being considered.)

Incidentally, with recurrence (1) in hand it is easy to prove that
(=24 5o
Jn = k; ( 2%k — 2 )x ‘

Indeed, assuming (for purposes of induction) that this formula holds for f,_;
and f, o, we have

Jo = <2+1/x2)fn71_fn72
nlin—3+k nlin—3+k
— 2 3—2k 1-2k
kz<2k—2 )x +Z<2k—2 )x

k=1

_TS n—A+k) 5o
2k — 2

k=1
1

The last equality requires some checking, coefficient by coefficient, and the
analysis splits into several cases. For k = 1, we have

(") - (") ("0 )



which is just 2 —1=1; for k =n — 1, we have

5 2n — 4 n 2n —5H B 2n — 3
on — 4 n—6) \2n—14

which is just 24 (2n — 5) = (2n — 3); for k = n, we have

2n —4 B 2n —2
m—4) \2n—2

which is just 1 = 1; and for 1 < kK <n — 1, we have

5 n—3+k . n—4-+k B n—4-+k B n—2+k
2%k — 2 2%k — 4 2% -2 |\ 2k—2 )

which can be proved by successively substituting

n—2+k B n—3+k n n—3+k
ok —2 )\ 2k—2 2% —3 )’
n—3+k B n—44+k n n—4+k
ok —2 )\ 2k—2 2k —3 )’

n—3+k B n—4+k n n—4+k
2k -3 )  \ 2k—3 2% —4 )’

and



