
Math 192r, Problem Set #21: Solutions

1. For n ≥ 0 let A(n) =
∑
n/2≤k≤n 2k (where the sum is only over integer

values of k), so that A(0) = 1, A(1) = 2, A(2) = 6, etc. Extend A(n)
to the negative domain in two different ways, and check that they agree:
first, by finding a formula for A(n) when n is positive; and second, by
applying the polytope reciprocity theorem.

We may separate the case of n odd and n even, e.g. using

A(n) =
1

2

(
(1 + (−1)n)Aeven(n) + (1− (−1)n)Aodd(n)

)
.

First take n to be even, so that we may write n = 2m. When m and
n are positive, A(n) = 2m + 2m+1 + . . . + 22m = 22m+1 − 2m. To check
that this is consistent with Ehrhart reciprocity, note that if m and n
are negative (say with m = −M and n = −N), −2n+1 − 2n+2 − . . . −
2m−1 = −(21−N +22−N + . . .+2−1−M) = −21−N(20 +21 + . . .+2M−2) =
−21−N(2M−1 − 1) = −21+2m(2−1−m − 1) = −2m + 21+2m, which equals
22m+1 − 2m as predicted.

Next take n to be odd, so that we may write n = 2m−1. When m and
n are positive, A(n) = 2m + 2m+1 + . . . + 22m−1 = 22m − 2m. To check
that this is consistent with Ehrhart reciprocity, note that if m and n
are non-positive (say with m = −M and n = −N), −2n+1−2n+2−. . .−
2m−1 = −(21−N +22−N + . . .+2−1−M) = −21−N(20 +21 + . . .+2M−1) =
−21−N(2M − 1) = −22m(2−m− 1) = −2m + 22m, which equals 22m− 2m

as predicted.

2. For n ≥ 0, let f(n) be the number of integer sequences of length n +
1 consisting of 1’s, 2’s, 3’s, and 4’s, such that the first term is 1,
the last term is 1, and any two consecutive terms differ by 0 or ±1.
Thus f(0) = 1, f(1) = 1, f(2) = 2, f(3) = 4, f(4) = 9, etc. Show
that this sequence satisfies a linear recurrence with constant coefficients,
so that f(−1), f(−2), f(−3), . . . have natural values. Interpret these
values combinatorially.
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f(n) is the upper left entry of Mn, where M is the matrix
1 1 0 0
1 1 1 0
0 1 1 1
0 0 1 1

 .

The characteristic polynomial of this matrix is t4−4t3 +3t2 +2t−1. By
the Cayley-Hamilton Theorem, M4−4M3 + 3M2 + 2M − I is the zero-
matrix, and more generally, Mn−4Mn−1+3Mn−2+2Mn−3−Mn−4 = 0
for any n ≥ 4. Since f(n) is the upper left entry of Mn, we have
f(n)− 4f(n− 1) + 3f(n− 2) + 2f(n− 3)− f(n− 4) = 0 for all n ≥ 4,
which is the desired recurrence equation.

Since the matrix M is invertible, Mn is defined for all integers n (posi-
tive or negative), and it follows from the Cayley-Hamilton theorem (as
above) that in fact Mn−4Mn−1 +3Mn−2 +2Mn−3−Mn−4 = 0 for any
integer n. Therefore, if we define f(n) for all integers n as the upper-left
entry of Mn, the bilateral sequence . . . , f(n), . . . will satisfy the linear
recurrence equation f(n)−4f(n−1)+3f(n−2)+2f(n−3)−f(n−4) = 0
for all integers n. Hence we have found “the” extension of our orig-
inal sequence f(1), f(2), . . . into the negative domain: f(−1) = 1,
f(−2) = 3, f(−3) = 6, f(−4) = 18, etc.

It only remains to interpret f(−1), f(−2), f(−3), . . . combinatorially.
To this end, note that M−1 is the matrix

1 0 −1 1
0 0 1 −1
−1 1 0 0

1 −1 0 1

 .

The fact that the non-zero entries of M−1 are all ±1 (and that (M−1)i,j
is −1 precisely when i and j differ by 2) gives us a combinatorial in-
terpretation of the upper left entry of M−n = (M−1)n as a signed
enumeration of sequences. Specifically, consider sequences consisting
of 1’s, 2’s, 3’s, and 4’s, such that: a 1 cannot be followed by a 2; a 2
cannot be followed by a 1 or a 2; a 3 cannot be followed by a 3 or a
4; and a 4 cannot be followed by a 3. Call such a sequence “okay”,
and define the sign of an okay sequence to be +1 or −1 according to
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whether the number of pairs of consecutive terms that differ by exactly
2 is even or odd. Then the upper left entry of (M−1)n is equal to the
sum of the signs of the okay sequences of length n+ 1 whose first and
last terms both equal 1.

However, we can do better, if we notice that all the okay sequences of
length n+ 1 have the same sign (so that there is no cancellation), and
that, indeed, the okay sequences that begin and end with a 1 all have
sign +1. For, if we divide {1, 2, 3, 4} into {1, 4} and {2, 3} (the “outer
values” and “inner values” respectively), we can check that the only
way in which an inner value in an okay sequence can be followed by
an outer value (or vice versa) is if the two values differ by 2. Thus, in
counting pairs of consecutive terms that differ by 2, we are counting
the number of times we move from an inner value to an outer value
or vice versa. But since we both begin and end with an outer value
(namely 1), the number of such transitions must be even. This proves
that every okay sequence whose first and last term is 1 must have sign
+1, and it follows that f(−n) can be interpreted more simply as the
number of okay sequences of length n + 1 whose first and last terms
both equal 1.
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