1. Find necessary and sufficient conditions for the infinite product $f_{1} f_{2} f_{3} \ldots$ to converge in the ring of formal power series. Be sure to take proper care of degenerate cases, e.g., where one of the f_{n} 's actually is 0 . A detailed proof is not required.
There are three ways for such a product to converge. First, one of the f_{n} 's could be 0 , in which case the product is 0 . Second, infinitely many of the f_{n} 's could be of positive order (i.e., could have constant term 0), in which case the product is again 0 . Third, it could be the case that $f_{n} \rightarrow 1$, i.e., that $\operatorname{ord}\left(f_{n}-1\right) \rightarrow \infty$, in which case the infinite product still converges (to something non-zero, unless one of the factors is zero as in the first case).
Here is a more rigorous analysis. If f_{n} is 0 for some n, the infinite product converges to 0 . Now suppose none of the f_{n} 's is 0 ; then each factor in the infinite product has finite order. Suppose that infinitely many of the factors have positive order (i.e., are divisible by x). Then the infinite product again converges to 0 . On the other hand, suppose (still assuming that all of the f_{n} 's are non-zero) that only finitely many of the factors have positive order; that is, suppose that all but finitely many have order 0 . If we let N denote the sum of the orders of those factors, then we find that $f_{1} f_{2} \cdots f_{n}$ is never divisible by x^{N+1}, no matter how big n is, which means that the infinite product cannot converge to 0 .
Now, suppose $f_{1} f_{2} \cdots f_{n} \rightarrow g$ for some non-zero formal power series g. For convenience, we will write the partial product $f_{1} \cdots f_{n}$ as F_{n}. Since $F_{n-1} \rightarrow g$, we may appeal to the continuity of division to infer that $f_{n}=$ $F_{n} / F_{n-1} \rightarrow 1$. Conversely, suppose $f_{n} \rightarrow 1$, so that $\operatorname{ord}\left(f_{n}-1\right) \rightarrow \infty$. The relation $F_{n}-F_{n-1}=F_{n-1}\left(f_{n}-1\right)$ gives ord $\left(F_{n}-F_{n-1}\right) \geq \operatorname{ord}\left(f_{n}-\right.$ 1), and since $\operatorname{ord}\left(f_{n}-1\right) \rightarrow \infty$, we have ord $\left(F_{n}-F_{n-1}\right) \rightarrow \infty$ as well (or equivalently $F_{n}-F_{n-1} \rightarrow 0$). But this implies that the infinite series $F_{1}+\left(F_{2}-F_{1}\right)+\left(F_{3}-F_{2}\right)+\cdots$ is convergent, which (by telescoping) is tantamount to the assertion that the sequence $F_{1}, F_{2}, F_{3}, \ldots$ converges, which means that the infinite product $f_{1} f_{2} f_{3} \cdots$ converges.
2. By comparing the expansions of $1 /\left(1-x-x^{2}\right)$ and $1 /(1-x-y)$, derive a formula for the Fibonacci numbers as sums of binomial coefficients. Specializing $1 /(1-x-y)=\sum_{n=0}^{\infty} \sum_{k=0}^{n}\binom{n}{k} x^{k} y^{n-k}$ to $y=x^{2}$, we get $1 /\left(1-x-x^{2}\right)=\sum_{n=0}^{\infty} \sum_{k=0}^{n}\binom{n}{k} x^{2 n-k}$. So the Fibonacci number F_{m}, being equal to the coefficient of x^{m} in the formal power series expansion of $1 /\left(1-x-x^{2}\right)$, must also be equal to $\sum\binom{n}{k}$, where the sum is taken over all n, k with $0 \leq k \leq n$ and $2 n-k=m$. These pairs are $(n, k)=$ $(m, m),(m-1, m-2),(m-2, m-4), \ldots$, so $F_{m}=\binom{m}{m}+\binom{m-1}{m-2}+$ $\binom{m-2}{m-4}+\ldots$, where the sum stops whenever the lower index is 0 (for m even) or 1 (for m odd). Example: $F_{4}=\binom{4}{4}+\binom{3}{2}+\binom{2}{0}=1+3+1=5$ and $F_{5}=\binom{5}{5}+\binom{4}{3}+\binom{3}{1}=1+4+3=8$.
