
Math 192r, Problem Set #19: Solutions

1. In problem #3 of assignment #17, multivariate polynomials

D(x1, x3, . . . , x2n+1; y2, y4, . . . , y2n)

were defined. Find an infinite acyclic directed graph with special vertices
. . . , v−1, v0, v1, . . . where all edges are assigned weight 1 and vertices are
assigned weights according to some scheme that you must devise, so that
for all integers i ≤ j the sum of the weights of the paths from vi to vj is
D(x2i+1, x2i+3, . . . , x2j+1; y2i+2, y2i+4, . . . , y2j). Include a proof that your
answer is correct.

We can build a model of our directed graph in Z2. Our vertices
will be pairs (i, j) with i − j equal to 0, 1, 2, or 3, and there will
be a directed edge from vertex (i, j) to vertex (i′, j′) if and only if
(i′ − i, j′ − j) = (1, 0) or (0, 1). The special vertices are vi = (i, i).
The weight of vertex (i, j) is xi+j if i − j = 0, yi+j/xi+j−1xi+j+1 if
i − j = 1, xi+j/yi+j−1yi+j+1 if i − j = 2, and yi+j if i − j = 3. Let
Wi,j be the sum of the weights of the paths from vi to vj. It is easy
to check that Wi,i = x2i and Wi,i+1 = y2i+1 as required. To prove that
Wi,j = D(x2i+1, . . . , x2j+1; y2i+2, . . . , y2j) for all values of i and j, it suf-
fices to verify that the numbers Wi,j satisfy the diamond recurrence.
That is, we must show that Wi,jWi+1,j−1−Wi+1,jWi,j−1 = 1. By Lind-
strom’s lemma, this is equivalent to the assertion that the signed sum
of the weights of the 2-routings from {vi, vi+1} to {vj, vj−1} is 1. But we
already know that there is a unique 2-routing of this kind, connecting
vi to vj and vi+1 to vj−1, so it suffices to check that the weight of this
2-routing is 1. To check this, note that the product of the weights of
(i, i), (i+ 1, i), (i+ 1, i+ 1), (i+ 2, i), (i+ 2, i+ 1), and (i+ 2, i+ 2) is
(x2i)(y2i+1/x2ix2i+2)(x2i+2)(x2i+2/y2i+1y2i+3)(y2i+3/x2i+2x2i+4)(x2i+4) =
1, the product of the weights of (i+3, i), (i+3, i+1), (i+3, i+2), and
(i+3, i+3) is (y2i+3)(x2i+4/y2i+3y2i+5)(y2i+5/x2i+4x2i+6)(x2i+6) = 1, the
product of the weights of (i+ 4, i+ 1), (i+ 4, i+ 2), (i+ 4, i+ 3), and
(i+ 4, i+ 4) is 1, etc.

2. Consider an infinite array with tilted upper boundary like the one shown
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below:

...
x5

x4 w5 y5

x3 w4 y4 ∗
x2 w3 y3 ∗ ∗ ∗

x1 w2 y2 ∗ ∗ ∗ ∗
w1 y1 ∗ ∗ ∗ ∗ ∗ ∗

...
...

Here the entries wi, xi, yi are formal indeterminates, and the entries
marked with asterisks are determined by the diamond rule as in assign-
ment #17; that is, whenever the array contains four entries arranged
like

a
b c
d

we must have ad−bc = 1. Some experimentation will probably convince
you that each entry in the table is a Laurent polynomial in the variables
wi, xi, yi, and that moreover each coefficient in this polynomial equals
+1. Show how for each such Laurent polynomial, the Laurent monomi-
als that participate correspond to the perfect matchings of some graph
(just as was the case in assignment #17). Give a concrete description
of the graphs and the correspondence between matchings and monomials
(including either a proof or convincingly large examples).

Consider first what we get when we specialize all the variables to equal
1:

...
1

1 1 1
1 1 1 2

1 1 1 2 3 7
1 1 1 2 3 7 11

1 1 2 3 7 11 26 41
...

...
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I claim that each of these entries counts the number of lattice paths
joining two points on the upper boundary of 1’s, where a lattice path
may pass only through vertices that are marked with 1’s, 2’s, 3’s, and 7’s
(call these the “single-digit locations”). Specifically, given a location in
the table, trace a diagonal going northwest until you hit the boundary,
and call that location i; likewise, trace a diagonal going northeast until
you hit the boundary, and call that location j. Then I claim that the
entry in question is equal to the number (call it N(i, j)) of paths from
location i to location j consisting of northeast and southeast steps, by
way of single-digit locations.

For example, I claim that the 3 in the last row of the above excerpt
counts the lattice paths between the two boldface 1’s on the boundary.
To see why this is true, take four entries that form a diamond, and
let the associated locations on the boundary be i, i′, j′, j (from left to
right). To get a proof by induction that the entries count lattice paths,
we need to verify that N(i, j)N(i′, j′) − N(i, j′)N(i′, j) = 1. But (by
Lindstrom’s lemma) this is a consequent of the fact that there is a
unique 2-routing that joins {i, i′} with {j, j′}, and that it connects i
with j and i′ with j′. (That’s because the single-digit locations in any
column are precisely the top two locations in that column.)

We have now shown that the entries in the table count lattice paths.
But a lattice path is just a special case of a routing (namely, a 1-
routing), so by using the routings-into-matchings trick we can get a
bijection between lattice paths in that graph and perfect matchings of
a certain graph. For instance, consider the directed graph

o

/

o o

/ \ /

o o o

/ \ / \ /

o o o o

\ / \ / \ /

o o o

\ / \ /

o o
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The 11 lattice paths joining the leftmost and rightmost vertices in this
directed graph correspond to the 11 perfect matchings of the graph

o

/

o-o o-o

/ \ /

o-o o-o o-o

/ \ / \ /

o o-o o-o o-o

\ / \ / \ /

o-o o-o o-o

\ / \ /

o-o o-o

which in turn correspond to the 11 perfect matchings of the graph

o-o

/ \

o-o o-o o

/ \ / \ /

o-o o-o o-o

/ \ / \ /

o o-o o-o

\ / \ /

o-o o-o

Now we may bring the variables wi, xi, yi back into the story. If in-
deed the rational functions that are generated by the two-dimensional
recurrence are Laurent polynomials, and if indeed each monomial con-
tributing to these polynomials has coefficient +1, then we can say that
the number of monomials must go like 1, 1, 1, 2, 3, 7, 11, 26, 41, . . . ,
and they should correspond to matchings of the above graph.

To see how the correspondence goes, label the hexagonal cells as shown
in the diagram on the next page:
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o-o

/ \

o-o o-o x_3 o

/ \ / \ /

o-o x_2 o-o w_3 o-o y_3

/ \ / \ /

o w_2 o-o y_2 o-o

\ / \ /

y_1 o-o o-o

(Note that we’ve added two extra “ghost-cells” at the ends.) Given a
matching µ of the graph (and its associated monomial) and a cell c in
the graph (and its associated variable), the exponent of the variable in
the monomial is equal to 2 minus the number of edges in µ adjacent to
c, unless c is a ghost-cell, in which case the exponent of the variable in
the monomial is equal to 1 minus the number of edges in µ adjacent to
c. For instance, the matching

o-o

o-o o-o x_3 o

/

o o x_2 o o w_3 o o y_3

/ \ / \ /

o w_2 o o y_2 o o

y_1 o-o o-o

corresponds to the monomial

y1−0
1 w2−3

2 x2−3
2 y2−3

2 w2−3
3 x2−2

3 y1−1
3 =

y1

w2x2y2w3

.
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