Due date for take-home final: What are the rules here?

TODAY:

Domino-tiling reciprocity

The quadratic recurrence for matchings of the 2-by-2n grid

The quadratic recurrence for matchings of the Aztec diamond

Stanley proves other reciprocity theorems, but they all involve

functions of n that exhibit polynomial growth.

The general reciprocity problem: Suppose a combinatorial 

sequence is given by the successive terms of some

polynomial p( ).  Then p(n) is an integer for all integers n, not 

just positive integers, and our goal is to understand the 

sequence p(-1), p(-2), ... as the answer to a (usually different)

combinatorial question.

You can broaden this to include quasipolynomial functions of n, 

but you can’t broaden it all the way to include things like

2^n, since 2^n isn’t an integer for n<0.

On the other hand, the Fibonacci sequence F_n, extended 

backwards, has F_n an integer for all integers n, so it’s

desirable to find reciprocity theorems that cover cases like

this.

It’s desirable to extend this to other functions f() that satisfy a 

linear recurrence equation with constant coefficients, where 

... the first and last coefficients are plus or minus one.

Domino-tiling reciprocity 

What about running the Fibonacci numbers backwards?

8,5,3,2,1,1,0,1,-1,2,-3,5,-8,...  

What are these new numbers counting?  
Look at the matrix product P_n = M_1 M_2 ... M_n, where

M_1 = [[u_1, s_1 t_1],[1,0]], 

M_2 = [[u_2, s_2 t_2],[1,0]], etc.  

The upper left entry of P_n has F_n terms, each of which has 

coefficient +1.  

To understand F_{-1}, etc., we look at P_{-1}, etc., where


P_2 = M_1 M_2


P_1 = M_1 = P_2 (M_2)^{-1}


P_0 = P_1 (M_1)^{-1} = I,


P_{-1} = P_0 (M_0)^{-1} = (M_0)^{-1},


P_{-2} = P_{-1} (M_{-1}}^{-1} 

= (M_0)^{-1} (M_{-1})^{-1}, ...

Let the polynomial p_i be the upper left entry of the matrix

product P_i.

p_0 has 1 term, p_{-1} has 0 terms, p_{-2} has 1 term (positive), 

p_{-3} has 1 term (negative), p_{-4} has 2 terms (positive),

p_{-5} has 3 terms (negative), p_{-6} has 5 terms (positive),

etc.

We KNEW that the sum of the coefficients would be (+5) (why?),


but we DIDN’T know that there’d be 5 terms, each with


coefficient +1.

So, up to sign, the Fibonacci numbers with negative index count 

something, namely, the terms of the multivariate polynomials

p_{-1}, p_{-2}, p_{-3},...

Is that combinatorial?  It is if we describe the monomials 

combinatorially!

In this case, the counting problem is reciprocal to itself, and there’s


a simple bijection between the terms of p_{-n} and the terms 

of p_{n-2} (exercise).

One goal of REACH is to extend our understanding of reciprocity


in situations like this where Ehrhart reciprocity doesn’t apply 

(because our sequences have exponential growth). 

A simpler way to look at negative-indexed Fibonacci numbers is 

by Popoviciu: if f(t)=1/(1-t-t^2), then

f*(t) = -f(1/t) = (-t)^2 / (1-(-t)-(-t)^2).

Another Popoviciu example: Suppose a_n is the number of 

compositions of n with parts of size 1 and size 4.  (A 

composition is like a partition, but order counts.)  E.g., 5 can 

be written as 1+1+1+1+1 or 1+4 or 4+1, so a_5=3.  Then for 

n >/= 4, a_{-n} equals (-1)^n times the number of 

compositions of n-4 with parts of size 3 and size 4.

(Exercise.)

For the final homework problem due Thursday, this method won’t 

work; you’ll need to use something else.

The quadratic recurrence for matchings of the 2-by-2n grid

Return to looking at perfect matchings of the 2-by-2n 

grid-graph whose edges have been assigned weights 

u_{2i-1},s_{2i-1},t_{2i-1},u_{2i},...

s_{2j-1},t_{2j-1},u_{2j}.  

(Show picture.)

Call this weighted graph G(i,j).

Let N_{i,j} be the sum of the weights of the matchings of this 

graph, for all i < j.  

Claim:

N_{1,n} N_{2,n-1} – N_{1,n-1} N_{2,n} 

= u_1 s_2 t_2 s_3 t_3 ... s_{2n-2} t_{2n-1} u_{2n}.

Exercise: Apply this to the last two homework problems in


assignment #17, by choosing suitable weights for the


edges.

Alternative proof of claim: Let Big and Small be matchings of 

G(1,n) and G(2,n-1).  Consider their union, as a multiset of 

edges (in which an edge can appear 0, 1, or 2 times).  This 

graph is a “near 2-factor” of G(1,n): every vertex belongs to 

two edges except the leftmost four vertices and the rightmost 

four  vertices.  In how many ways can a near 2-factor of 

G(1,n) be written as Big ( Small?  ... 2^k, where k is the 

number of  cycles.  But this is also the number of ways in 

which a near 2-factor can be written as Left ( Right, where 

Left and Right are perfect matchings of N_{1,n-1} and 

N_{2,n}, respectively.  Moreover, the weight-sums are the 

same, so if everything we’ve said is true, 


N_{1,n} N_{2,n-1} – N_{1,n-1} N_{2,n}

should vanish.  But I lied: ... When Big is the matching with 

vertical edges u_1 and u_{2n} and no other vertical edges

and Small is the all-horizontal matching (but only in this 

case!), then there is no way to write their union in the form 

Left ( Right.  So

N_{1,n} N_{2,n-1} – N_{1,n-1} N_{2,n}

= u_1 s_2 t_2 s_3 t_3 ... s_{2n-2} t_{2n-1} u_{2n}.

This gives us a way to give rigorous proofs for your conjecture for 

problems 3 and 4 from assignment 17, concerning diamond

patterns.

It also ties back to the very first assignment, and the sequence

f_0(x) = x,

f_1(x) = x, 

f_2(x) = x + x^{-1},

f_3(x) = x + 3x^{-1} + x^{-3},

etc.

given by the recurrence 

f_n(x) = ([f_{n-1}(x)]^2+1)/f_{n-2}(x).

This comes from a redundant diamond-pattern
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You can use the result from assignment #17 to re-prove the result 

from assignment #1.

Remark on reciprocity: What happens when we run the frieze 

recurrence in reverse? ...

This is related to the fact that if you run the recurrence for the


excerpted Fibonacci sequence 1, 2, 5, 13, ... in reverse,


you get the same sequence back again.

Did anyone find a different proof of the result from assignment 

#17? ...

We can also derive this from problem set #19, problem 1.

(Maybe do this on Thursday?  Maybe have the class help?)
We’ve seen that frieze patterns and number walls are special cases


of Dodgson condensation.

Diamond patterns are special cases of a twisted version of 

Dodgson condensation, in which the minus-sign gets 

replaced by a plus-sign.

I asked you to study this twisted version of Dodgson in problem set


#20.

The quadratic recurrence for matchings of the Aztec diamond

Eric Kuo’s proof

Mention that it can be used to prove what you conjectured in 

problem #2 of assignment #20

Bring questions, or better yet, email them!

Do any of you have things you’d like to share on Thursday?

If so, let me know by email by midnight tonight.

Comment forms

