TODAY:

Reciprocity:

The Ehrhart summation convention

The polytope reciprocity theorem

Application to binomial coefficients

Application to Stirling numbers

Application to chromatic polynomials

Domino-tiling reciprocity

Mention Yuval Peres’ talk at 4:30 on Thursday at M.I.T.

The Ehrhart summation convention

Retrogression: 

Triangle numbers: ..., 6,  3, 1, 0, 0, 1, 3, 6, 10, ...

Square numbers:  ..., 16,  9, 4, 1, 0, 1, 4, 9, 16, ...

Retrogression via Popoviciu: f*(x) = – f(1/x) (where f( ) satisfies 

some LRE)

Example: The pentagonal numbers n(3n-1)/2:

f(x) = 1+5x+12x^2+22x^3+... 

= (1+4x+7x^2+10x^3+...)/(1-x) 

= (1+3x+3x^2+3x^3+...)/(1-x)^2 

= (1+2x)/(1-x)^3 = x/(1-x) 

f*(x) = –(1+2/x)/(1-1/x)^3 = x^2 (2+x)/(1-x)^3

= 2x^2+7x^3+15x^4+26x^5+...

(coefficients of the form n(3n+1)/2 = (-n)(3(-n)-1)/2)

Facts:(f+g)* = f* g*

(fg)* = -f*g*

Special case:

(f(x)(1+x+x^2+...))* = -(f(x)*)(x+x^2+x^3+...)

Extract coefficients:

f(x)(1+x+x^2+...) = 

(a(0)+a(1)x+a(2)x^2+...)(1+x+x^2+...)

Coefficient of x^n: a(0)+a(1)+...+a(n)

-f*(x)(x+x^2+x^3+...) = 

-(a(-1)x+a(-2)x^2+a(3)x^3+...)(x+x^2+x^3+...)

Coefficient of x^n: -a(-1)-a(-2)-...-a(-(n-1))

Conclusion: If a( ), b( ) are sequences that satisfy LREs and 

b(n) = sum_{k=0}^{n}a(k) for n geq 0, then 

b(-n) = -a(-1)-a(-2)-...-a(-(n-1))

Check this in an intuitive way: 


b(2): a(0)+a(1)+a(2)


b(1): a(0)+a(1)


b(0): a(0)


b(-1): 0


b(-2): -a(-1)


b(-3): -a(-1)-a(-2)


b(-4): -a(-1)-a(-2)-a(-3)


...

In fact, for ANY bilateral sequence ...,a(0),..., a natural way to 

interpret  “sum_{m </= k </= n} a(k)” when m>n is as

( sum_{n < k < m} a(k).

Note that the weak inequalities have become strict inequalities.

(Contrast with Knuth’s variation on the summation operator.)

What about interpreting F(n) = sum_{0 leq i,j leq n} f(i,j) with 

n<0?

If there were time, we’d work this out here!

It’s sum_{-n < i,j < 0} f(i,j).  (Write it as a double sum.)

What about sum_{0 leq i,j leq n, i+j leq n}f(i,j)?

It’s sum_{-n < i,j < 0, i+j > -n) f(i,j).

What about sum_{0 leq i leq j leq n} f(i,j)?

It’s sum_{-n<j<i<0} f(i,j).

What about sum_{0 leq i leq j leq k leq n} f(i,j,k)?

It’s sum_{-n<k<j<i<0} –f(i,j).

The polytope reciprocity theorem

There’s a single theorem that summarizes all this.

Polytope reciprocity theorem: Let P be a convex compact 

m-dimensional polytope in R^m whose vertices have rational 

coordinates.

Define polytope, rational polytope

Note that when we say that P is m-dimensional, we don’t just mean


that it’s sitting in an m-dimensional space; it’s intrinsic 

dimension is m.  In particular, in has non-empty interior as a 

subset of R^m.
Let a(x_1,...,x_m) be some m-dimensional sequence whose terms


satisfy some multidimensional LRE with constant 

coefficients.  (Abbreviate (x_1,...,x_m) by x.)

Define b(n) as sum_{x in nP} a(x), where nP is the polytope 

obtained by dilating P by a factor of n.

Then b(n) satisfies a one-dimensional LRE with constant 

coefficients, so there is a natural way to define it for n<0.

Claim: For n<0, b(n) = (-1)^m sum_{x in (-n)Q} a(x), where Q is


the interior of P, reflected through 0.

Example: m=1, P=[0,1], Q=(-1,0).  

nP = [0,n]; nP ( Z = {0,1,...,n-1,n}

(-n)Q=(n,0); (-n)Q ( Z = {n+1,n+2,...,-2,-1}.

More generally: Suppose P is d dimensional, with d </= m.  Then 

b(n) = (-1)^d sum_{x in (-n)Q} a(x), where Q now denotes 

the relative interior of P (that is, the interior of P relative to 

the d-dimensional space that contains it) reflect through 0.

Example: m=2, d=1, P = the line segment with endpoints 

(1,0),(0,1).

Special case: The function a(x) is identically 1.

Then for n >/= 0, b(n) is the number of lattice points in nP, while


for n<0, b(n) is (-1)^d times the number of lattice points in 

(-n)Q.

Note that nQ contains the same number of lattice points as (-n)Q.


It’s just the negative of the polyhedron; that is, the 

polyhedron you get by reflecting through the origin.

We may write the number of lattice points in nP as #(nP(Z^m).

Example: P is the trapezoid with vertices (0,0),(2,0),(1,1),(0,1).

The number of lattice points in nP is (n+1)(3n+2)/2.

The number of lattice points in nQ is (1-n)(2-3n)/2 = (n-1)(3n-2)/2.

Theorem (Ehrhart): If the vertices of P have integer (as opposed to


merely rational) coordinates, then #(nP(Z^m) is given by a


polynomial.

This is called the Ehrhart polynomial of the polytope P.

In this context, the polytope reciprocity theorem is called Ehrhart’s


theorem.

In the general case where the vertices are merely rational, 

#(nP(Z^m) is a quasipolynomial (remind them what that 

means).

Research problem: Can we make sense of this if P isn’t rational?


E.g., if the coefficients of P are quadratic irrationals?
Application to binomial coefficients

The polytope reciprocity theorem says that if f( ) is a polynomial 

with the property that f(n) = #(nP(Z^m) for some closed 

rational d-dimensional polytope P in R^m (for all n >/= 0), 

then f(-n) = (-1)^d #(nQ(Z^m) where Q is the relative

interior of P.

The claim remains true if P is relatively open and Q is its closure.

Example: P is the polytope in R^m consisting of the points


(x_1,...,x_m) satisfying 0 < x_1 < x_2 < ... < x_m < 1.

Then #(nP(Z^m) = (n-1 choose m) = (n-1)(n-2)...(n-m)/m!.

Q is the polytope given by the constraints


0 </= x_1 </= x_2 </= ... </= x_m </= n.

So #(nQ(Z^m) = (n+1 multichoose m).

Ehrhart’s theorem tells us that #(nQ(Z^m) must be equal to


(-n-1)(-n-2)...(-n-m)/m! = (-1)^m (n+1)(n+2)...(n+m)/m!.

Ehrhart reciprocity gives us the relationship between selecting

elements without replacement and selecting elements with

replacement.

In particular, (n+1 multichoose m) = (-1)^m (m+n choose m).

Application to Stirling numbers

What if P is neither open nor closed?  

In many situations, you can still define a “reciprocal domain” Q 

so that the reciprocity relation holds.

Theorem (Stanley): Suppose P is a convex rational polytope in 

Z^m that, topologically, is a d-manifold or a d-manifold with 

boundary (the boundary may be empty).  Let overline(P) be 

the closure of P.  Suppose that the faces of overline(P) absent 

from P form a (d-1)-manifold with boundary.  Then if we let

Q be overline(P) with its OTHER faces removed (that is, if 

we turn all strict inequalities to weak inequalities and vice 

versa), the reciprocity relation holds.

We say P and Q are “reciprocal domains”.

We can apply this to the Stirling numbers.

Exercise: S(n+k,n) = sum r_1 r_2 ... r_k where the sum is over all 

r_1,...,r_k with 1 </= r_1 </= r_2 </= ... </= r_k </= n.

This equals the number of 2k-tuples (r_1,...,r_k,s_1,...,s_k) with


0 < r_1 </= ... </= r_k </= n and 0 < s_i </= r_i for all i.

Thus S(n+k,n) = #(nP(Z^2k) where P is the closed polytope

{(x_1,...,x_k,y_1,...,y_k): 0 < x_1 </= ... </= x_k </= 1 and

0 < y_i </= x_i for all i}.

The reciprocal domain Q is

{(x_1,...,x_k,y_1,...,y_k): 0 </= x_1 < ... < x_k < 1 and

0 </= y_i < x_i for all i}.

For n>0, the number of lattice points in nQ is sum r_1 r_2 ... r_k


where now the sum is over all r_1,...,r_k with 0 < r_1 < r_2 <


... < r_k < n.

You can show combinatorially that this is equal to the unsigned 

Stirling number c(n,n-k).

Indeed, for fixed k, there exists a polynomial f( ) with f(n) = 

S(n+k,n) and f(-n) = s(n,n-k) for all n>0.

Application to chromatic polynomials

(SKIP, IF TIME IS SHORT)

Given a graph G with m vertices, let chi(n) be the number of ways 

to assign colors to the vertices of G so that no vertices of G that share an edge are assigned the same color, where the set of allowed colors has size n.

Claim: chi(n) is a polynomial in n, and chi(-1) is (-1)^m times the 

number of acyclic orientations of G.

Example: Let G be a cycle of length 4.  Then 

chi(n) = n(n-1)(n-2)(n-3) + 2n(n-1)(n-2) + n(n-1), so 

chi(-1) = (24) – 2(6)+2 = 14, which checks (16-2=14).

Proof of first part of claim: Number the vertices 1 through m, and


represent each coloring by the m-tuple (r_1,...,r_m) where


r_i is the color of the ith vertex.  We have m constraints of 

the form 0 < r_i </= n and lots of constraints of the form

r_i not-equal-to r_j (one constraint for each edge in G).

We can divide this set up into pieces, by requiring either

r_i < r_j or r_i > r_j for each such pair i,j.  Each of these

pieces is of the form nP(Z^m, so the number of lattice points 

in each piece is given by a polynomial.  The pieces are 

disjoint, so the number of lattice points in their union is given 

by a polynomial too.

Note that there might be exponentially many such pieces, as a 

function of the number of edges of G, but G is fixed: the 

number of pieces doesn’t vary as n varies.

Each of the non-empty pieces corresponds to picking an acyclic


orientation of G.

When we take the reciprocal domain of each piece P, we get 

something that contains just a single lattice point.

NOTE: You need to check that the hypotheses in Stanley’s 

theorem are satisfied!  I’ll leave this to you.

Alternatively, you can split P up into (not necessarily disjoint) 

pieces, and apply Ehrhart reciprocity to the pieces, being 

careful about the overlaps.
