Welcome back!

There are six more lectures during the regular term

The take-home final exam will be due on Tuesday, Jan. 22 at


4 p.m.

Questions (logistical or mathematical)?

TODAY:

Plane partitions and tilings (review of routings, Lindstrom’s


lemma, and Dodgson condensation)

Plane partitions and tilings

I’m sorry you found the second problem in Problem Set #16 too 

computationally intensive [remind them which problem I 

mean, and credit it to Macmahon]; I’m glad I didn’t assign 

the original version of the problem, which asked you to prove 

the formula for the sum of the q-weights!

But let’s talk about the ingredients of the non-q version.  

Ingredients? ...

Ingredients of proof of MacMahon’s formula:

1. Tilings into routings

Discuss why this works for lozenge tilings and domino tilings.

Let G be any acyclic directed graph with n sources s_i and n


terminals t_i.  Then the n-routings through G correspond to


the perfect matchings of the “deleted double” of G, defined


as follows: 

For each vertex v of G, create a pair of vertices v( and v+ 

and join them by an edge.  

For each arc v(w in G, join v+ and w( by an edge.

Delete v( if v is a source.

Delete v+ if v is a sink.

Check that this works for lozenge tilings of hexagons and domino


tilings of squares.

A plane partition with rows of length at most A, columns of length 

at most B, and entries no larger than C can be depicted as a 

3D Young diagram that fits in an A by B by C box, which in 

turn can in turn be depicted as a tiling of a semiregular 

hexagon with sides of length A,B,C,A,B,C, which can in turn

be depicted as a routing through the region


{(x,y): 0 leq x leq B+C-1, 0 leq y leq A+C-1,


C-1 leq x+y leq A+B+C-1}

with C sources and C sinks, using East- and North-going 

edges.

2. Lindstrom’s lemma

Let G be a directed acyclic graph, let v_1,...,v_n and w_1,...,w_n

be vertices in G, and let M be the matrix whose i,jth entry is

the number of paths in G from v_i to w_j.  Then det(M) is

the number of even routings minus the number of odd 

routings, where a routing is a collection of n non-intersecting

paths joining v_i to w_{pi(i)} for some permutation pi,

and where the sign of a routing is the sign of the permutation.

Special case: If there are no odd routings (i.e., if attempting to 

create an odd routing leads to intersections between the paths 

no matter what you do), then det(M) is the number of 

routings.

Special special case: The only routings are those that join v_i to 

w_i for all i (pi = the identity permutation).

Proof by ... sign-reversing involution.

The 2n vertices need not be sources and sinks.

They need not even all be distinct.

3. Dodgson condensation

Who was Dodgson?... Lewis Caroll.
Let M be an n-by-n matrix and for I,J subsets of {1,...,n} let


M^{I;J} be the matrix formed from M by crossing out all


entries that belong to rows in I or columns in J.

Fix a<b and c<d in {1,...,n} = [n].

det(M) det(M^{a,b;c,d}) = det(M^{a;c}) det(M^{b;d}) (

det(M^{a;d}) ( det(M^{b;c}).

Typically one takes a=c=1, b=d=n:


M^{a,b;c,d} = the central (n-2)-by-(n-2) minor.


M^{a;c} = the lower right (n-1)-by-(n-1) minor,


M^{b;d}= the upper left (n-1)-by-(n-1) minor,


M^{a;d} = the lower left (n-1)-by-(n-1) minor,


M^{b;c} = the upper right (n-1)-by-(n-1) minor.

Try it with A=B=C=3:


[(6 choose 3)  (6 choose 2)  (6 choose 1)]


[(6 choose 4)  (6 choose 3)  (6 choose 2)]


[(6 choose 5)  (6 choose 4)  (6 choose 3)]


[20  15   6]


[15  20 15]


[  6  15 20]

[175  105]

[105  175] 

19600 / 20 = 980

Why Dodgson condensation is useful: It works recursively to 

express the determinant of a matrix in terms of the 

determinants of its connected minors.

In many matrices, the connected minors have an especially

nice structure, so you can get induction arguments off the 

ground.  (Example 1: Vandermonde.  Example 2: The 

homework problem; Toplitz matrices; Hankel matrices.)  The 

alternative is Lagrange expansion, but that involves non-

connected minors that in many instances aren’t as nice 

(revisit the examples).

Explain the 3-dimensional pyramid and the octahedral rule; cf. the 

rules for 2-dimensional frieze patterns and diamond patterns.

Why Dodgson condensation isn’t taught: ... The division by zero 

problem.  If the matrix has connected minors that are 

singular, Dodgson condensation will involve evaluating

expressions of the form 0/0.

Research problem: Find a version of Dodgson condensation that is


usable in practice for symbolic determinants (avoiding the 

0/0 problem).

A limited version of this has been worked out for Toplitz matrices;


this is the theory of number walls (which we’ll only touch


upon glancingly).  More on this shortly.

The q-weighted version of MacMahon’s formula:
It’s what you might guess: The sum of the q-weights of all the 

solid Young diagrams that fit inside an a-by-b-by-c box is 

H([a+b+c])H([a])H([b])H([c])/H([a+b])H([a+c])H([b+c]),

where H([n]) = [1]![2]!...[n-1]!, [k]! = [1][2]...[k] as before, 

and [i] = 1+q+q^2+...+q^{m-1} as before.

What would we use to prove this? ...

To prove this: Use a weighted version of the Lindstrom lemma.

Sending a,b,c to infinity, we find:

The number of plane partitions of n equals the coefficient of q^n


in (1-q)^{-1} (1-q^2)^{-2} (1-q^3)^{-3} ... .

Proof: omitted.

What question do you want to ask now?

For solid partitions, no such formula is known.

