TODAY:

The sign of a permutation

Permanents and determinants

Lindstrom’s lemma

Plane partitions and tilings

Dodgson condensation

Up till now, we’ve been using linear algebra freely.

Now we’re going to rebuild linear algebra from scratch, along


algebraic lines.

The sign of a permutation 

If S is a finite set with n elements and pi is a permutation pi: S(S 

with m cycles, we define the sign of pi as (-1)^{n-m}.  

Special cases:

If pi is the identity, then sign(pi) = (-1)^{n-n} = +1.

If pi is a transposition (i.e., there exist i (j such that pi(i)=j, pi(j)=i, 

and pi(k)=k for every other k) then S has n-1 cycles and so 

has sign –1.

We say a permutation is even or odd according to whether its 

sign is +1 or –1.

Proposition 1: If  tau is a transposition, then pi and tau ( pi have 

opposite sign.

Proof: If i and j are in the same cycle in pi, composing tau with pi


breaks the cycle, creating 2 cycles in place of 1.  If i and j are


in different cycles in pi, composing tau with pi merges them,


creating 1 cycle in place of 2.  Either way, the number of


cycles changes by 1.  (Check details yourself!)

Proposition 2: A product of k transpositions has sign (-1)^k.

Proposition 3: If a permutation can be written as a product of k


permutations and as a product of k’ permutations, k and k’


have the same parity.

Proposition 4: Every permutation can be written as a product of


transpositions.

Proposition 5: sign(pi ( rho) = sign(pi) sign(rho).

Some authors write sign(pi) as (-1)^pi or (-)^pi.

Permanents and determinants

Given an n-by-n matrix A = (a_{i,j})_{1 leq i,j leq n}, define


per(A) = sum_{pi} a_{1,pi(1)} a_{2,pi(2)} ... a_{n,pi(n)}

and


det(A) = sum_{pi} sign(pi) a_{1,pi(1)} ... a_{n,pi(n)}.

Example: If n = 2, det(A) = a_{1,1} a_{2,2} – a_{1,2} a_{2,1}.

We’ve seen this before, in the exchange lemma.

The determinant of a 1-by-1 matrix is a_{1,1}.

The determinant of a 0-by-0 matrix is declared to be 1.  Why?

OMIT:

Proposition (related to homework): If a_{i,j} = 0 for i </= j,


det(A) = 0.

Proof: For all pi, there must exist i with pi(i) </= i.

RESUME

Easy consequences of definition:

1) det(A^T) = det(A)

2) Multilinearity:

If you multiply a row (or column) of a matrix by c,


its determinant is multiplied by c.

If two matrices A,B agree outside of a single row (or 

column), and C is the matrix that agrees with both

except that this particular row (or column) is the

sum of those rows (or columns) of A and B, then

det(C) = det(A) + det(B).  Clarify this with a 2-by-2

example. 

3) Antisymmetry:

If you switch two rows (or columns) of a matrix,


its determinant is multiplied by –1.

Lindstrom’s Lemma

Suppose we have an acyclic directed G graph with n sources 

s_1,...,s_n and n terminals t_1,...,t_n with the property that 

for any non-identity permutation pi, there is no way to join

s_1 to t_{pi(1)}, s_2 to t_{pi(2)}, ... s_n to t_{pi(n)} with

non-intersecting paths.  Then the number of routings that

join s_i to t_i (for all i from 1 to n) equals the determinant

of the n-by-n matrix N with N(i,j) = # of paths from s_i to

t_j.

Check that this is trivial for n=1 and that it agrees with the 

exchange principle for n=2. 

Proof: The determinant is a sum of n! terms, each of the form

sign(pi) N(1,pi(1)) N(2,pi(2)) ... N(n,pi(n)).


We can interpret this (up to sign) as the number of ways


to choose n paths in G that respectively join s_i to t_pi(i)


for i = 1 to n, ignoring intersections.

Define the weight of such a collection as (-1)^pi.  Then det(N)


equals the sum of the weights of all the ways of linking


up sources with terminals, ignoring intersections.

Call this set L, and let L* be the set of elements of L in which


the n paths are disjoint from one another.

We define a sign-reversing involution on L \ L*.

Given an element of L \ L*, find the smallest i such that the path P 

that starts from s_i intersects another path, and find the 

smallest i’ such that the path P’ from s_i’ intersects the path 

from s_i.  Say the first place where P and P’ intersect is v.

Is this well-defined?  Yes, because G is acyclic!

Define a new element of L\L* by switching the part of P from s_i 

to v and the part of P’ from s_i’ to v.  The permutation 

associated with this routing is pi ( tau where tau is the 

transposition switching i and i’.  Since sign(pi ( tau) = 

- sign(pi), our mapfrom L \ L* to itself is sign-reversing.  It 

is also an involution.  (Check this!)

So det(N) equals the sum of the weights of all the elements of L,


which equals the sum of the weights of all the elements of 


L*.

But by hypothesis, every element of L* joins s_1 with t_1, s_2 

with t_2, etc., and so has weight +1.

Therefore the sum of the weights of the elements of L equals


the number of of routings that join s_i with t_i for all i.

This concludes the proof.

Application: Let s_1,...,s_n be the points (i,0) with i going from


0 down to –(n-1), and let t_1,...,t_n be the point (0,j) with j 

going from 0 up to n-1.  Use arcs that go over 1 or up 1.

Lindstrom’s Lemma tells us that the number of routings is the


determinant of the matrix whose i,jth entry is (i+j)!/i!j!.

But geometrically it’s clear that in fact the number of routings is


... 1!

So we’ve proved combinatorially that for all n, the upper left 

n-by-n block of the infinite Pascal matrix has determinant

1.

So this wasn’t a very interesting enumerative application of 

Lindstrom’s Lemma, but now we’ll see a much more

interesting one.

Plane partitions and tilings

An ordinary partition is a list of parts, in weakly decreasing order:



5 3 2 2

You can imagine there being infinitely many zeroes at the end.

A plane partition is a two-dimensional array of parts, weakly


decreasing by rows and columns, with all but finitely many


entries empty (i.e., equal to zero):



5 3 2 2



4 3 1



2 2 1



1

Just as an ordinary partition is represented by a 2D Young 

diagram, a plane partition is represented by a 3D Young

diagram.

Show picture.
A plane partition with rows of length at most A, columns of length 

at most B, and entries no larger than C can be depicted as a 

3D Young diagram that fits in an A by B by C box, which in 

turn can in turn be depicted as a tiling of a semiregular 

hexagon with sides of length A,B,C,A,B,C, which can in turn

be depicted as a routing through the region


{(x,y): 0 leq x leq B+C-1, 0 leq y leq A+C-1,


C-1 leq x+y leq A+B+C-1}

with C sources and C sinks, using East- and North-going 

edges.

Try it with A=B=C=3:


[(6 choose 1)  (6 choose 2)  (6 choose 3)]


[(6 choose 2)  (6 choose 3)  (6 choose 4)]


[(6 choose 3)  (6 choose 4)  (6 choose 5)]


[20  15   6]


[15  20 15]


[  6  15 20]

I’m going to take the determinant in a way most of you probably 

haven’t seen before:

[175  105]

[105  175] 

19600

19600 / 20 = 980

STOP HERE?

Dodgson condensation

Who was Dodgson?

Suppose M is an n-by-n matrix with n > 1.  Let


I = the upper left (n-1)-by-(n-1) minor,


J= the upper right (n-1)-by-(n-1) minor,


K = the lower left (n-1)-by-(n-1) minor,


L = the lower right (n-1)-by-(n-1) minor,


H = the central (n-2)-by-(n-2) minor.

Then det(M)det(H) = det(I)det(J) – det(K)det(L).

Application: Compute det([1,1,1],[1,2,3],[1,3,6]).

Mention the case where n=2 and H is 0-by-0.

Recursive scheme for computing det(M) in terms of the 

determinants of its connected minors.

Proof: See Zeilberger.

Why isn’t it taught?

Because it doesn’t always work.

(Sometimes it gets stuck at 0/0.)

Research problem: Fix it!

