TODAY:

Number partitions

Number Partitions

A partition of the positive integer n is a way of writing n as a sum


of one or more positive summands, where “order doesn’t 

matter”.

Thus, the number 4 has 5 partitions:


1+1+1+1


1+1+2=1+2+1=2+1+1


1+3=3+1


2+2


4

The summands are called “parts”, and it’s usually convenient to 

write them either in weakly ascending OR weakly 

descending order.  (Discuss what I mean by “weakly”.)
By convention, we say that the number 0 has one partition, the 

“empty partition”.

We let p(n) be the number of partitions of n.  Thus


p(0) = 1, p(1) = 1, p(2) = 2, p(3) = 3, p(4) = 5, p(5) = 7,


p(6) = 11, [...] p(7) = 15, ...

There’s no simple exact formula for p(n), though there is a 

beautiful and complicated one due to Hardy and Ramanujan, 

and there is a beautiful and simple form for the generating 

function of this sequence.

We can represent a partition by a diagram of dots, called a Ferrers


diagram, or by a diagram of boxes, called a Young diagram:
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(This is the English style; the French flip their Ferrers and Young 

diagrams into the first quadrant.)
Put origin at lowest left vertex.

If a partition has B parts, and the largest part is A, then the Young 

diagram has a boundary that consist of three parts: a straight 

path from (0,0) to (0,B), a straight path from (0,B) to (A,B), 

and a NE, SE, lattice path from (0,0) to (A,B) that begins

with an E-step and ends with an N-step. 

If we drop the constraint that the lattice path has to begin with an 

E-step and end with an N-step, we get all the partitions with at most B parts, and with each part of size at most A.

Show how the partition (2,1) fits inside this diagram.  

These are precisely the partitions whose Young diagram fits inside

an A-by-B rectangle.

The number of such partitions equals the number of lattice paths 

from (0,0) to (A,B), namely (A+B)!/A!B!.

What if we want to “q-count” the partitions?

But wait: we already have!

(Discuss; point out that we’re complementing, but that it doesn’t

matter, because of the symmetry.)

Theorem (already proved): The number of partitions of n with at 

most B parts, each of size at most A, is equal to the 

coefficient of q^n in the polynomial [A+B]!/[A]![B]!

These polynomials are called the Gaussian polynomials, or the


q-binomial coefficients.

What happens when A or B goes to infinity, or both of them do?

Write [A+B]!/[A]![B]! = ([A+1]/[1])([A+2]/[2])...([A+B]/[B])


= ((1-q^{A+1})/(1-q)) ((1-q^{A+2})/(1-q^2)) ...



((1-q^{A+B})/(1-q^B))

If B goes to infinity, this goes to 1/(1-q)(1-q^2)...(1-q^A).

Consequence: The number of partitions of n into parts of size at 

most A is equal to the coefficient of x^n in the formal power 

series 1/(1-q)(1-q^2)...(1-q^A).

Note direct proof.

More generally: if S is any subset of the positive integers, the 

number of partitions of n into parts belonging to S equals the 

coefficient of x^n in the (finite or infinite) product


prod_{k in S} 1/(1-q^k).

What can you say about an exact formula for the number of


partitions of n into 2’s, 3’s and 5’s? ...

It is a ``quasi-polynomial function’’ (discuss) of n, of the form



f(n) = C_n n^2 + D_n n + E_n


where C_n, D_n, and E_n are periodic mod (2)(3)(5).

Equivalently, f(n) = p_n (n) where p_1, p_2, ... is a periodic


sequence of degree-2 polynomials with period 30.

The g.f. 1/(1-q)(1-q^2)...(1-q^m) also counts partitions with at 

most m parts.

Partitions with exactly m parts:


1/(1-q)...(1-q^m) – 1/(1-q)...(1-q^{m-1}


= q^m/(1-q)...(1-q^m).

Mention bijective proof, too.

Partitions with largest part m: also q^m/(1-q)...(1-q^m).

Mention bijective proof.

Take A,B both to infinity: 1/(1-q)(1-q^2)(1-q^3)...

Let p(n) = # of partitions of n (unconstrained),

p(n,k) = # of partitions of n with largest part k.

Then p(n) = p(n,1) + p(n,2) + p(n,3) + ...

Claim: p(n,k) = p(n-k,k) + p(n-1,k-1)  if 1 leq k leq n geq 0.

Proof: See Wilf, “East Side, West Side”.

OMIT:

Proof: p(n,k) – p(n-k,k) equals the number of partitions of n in


which 

(A) the part k occurs exactly once and all other parts are

strictly smaller.  

If we take such a partition and reduce its unique part of size k 

by 1, we get a partition of n-1 in which 

(B) the largest part is of size k-1.  

Conversely, given a partition of n-1 satisfying (B), if we 

increase one of its parts of size k-1 by 1, we get a partition of 

n satisfying (A).

RESUME:

Wilf, in “East Side West Side”, goes on to turn this into a Maple


program, using suitable initial conditions.

The generating function for partitions into distinct parts is

(1+q)(1+q^2)(1+q^3)...

Explain.

The generating function for partitions into distinct parts with

exactly m parts is

q^{1+2+...+m} / (1-q)(1-q^2)...(1-q^m).

Explain.

Theorem (Euler): The number of partitions of n into distinct parts


equals the number of partitions of into odd parts.

Algebraic proof: (1+x)(1+x^2)(1+x^3)(1+x^4)...


    1-x^2     1-x^4     1-x^6   1-x^8


= ---------  ---------  --------  --------- ...


      1-x       1-x^2     1-x^3   1-x^4


= 1/(1-x)(1-x^3)(1-x^5)(1-x^7)...

Bijective proofs are also known.

Good challenge: find one!

The coefficient of  x^n in (1+x^2)/(1–x^3) is the number of

partitions of n into parts of size 2 and 3, where the part

of size 2 cannot be repeated.  Call it a_n.

The coefficient of x^n in (1-x^3)/(1+x^2) is the sum of the weights

of all the partitions of n into parts of size 2 and 3, where

the part of size 3 cannot be repeated, where the weight of a

partition is -1 to the power of the number of parts.  Call the

coefficient b_n.

Claim: For n > 0, sum_{k=0}^n a_k b_{n-k} = 0.

Algebraic proof: Same as in last problem of midterm.

Good challenge: Find a bijective proof.

The long recurrence relation for p(n):

p(n) = p(n-1) + p(n-2) – p(n-5) – p(n-7) + p(n-12) + p(n-15)

· p(n-22) – p(26) + p(n-35) + p(n-40) –  –  + + ...

Equivalently: 

Euler’s pentagonal number theorem:

(1-x)(1-x^2)(1-x^3)... 

= sum_{n in Z} (-1)^n q^{3n(n+1)/2}.

Explain why it’s equivalent.

Franklin’s bijective proof:

Assign a partition with distinct part weight (-1)^k, where k is


the number of parts, so that the coefficient of x^n in the


LHS is the sum of the weights of the partitions of n into


distinct parts.

Say a partition with distinct parts is pentagonal if the parts are 

m+1,m+2,...,m+n with n=m or m+1.

Claim: For all n, the sum of the weights of all the non-pentagonal


partitions of n into distinct parts equals 0.

Very tricky exercise: Find a sign-reversing involution.  (The details


are in just about any treatment of partitions you could find.)

Give details, if time permits and the students desire. 

OMIT: Uniqueness of cyclotomic factorization

OMIT: Durfee square

OMIT: Rogers-Ramanujan theorem (have them conjecture this?)

OMIT: HW: Fix m, and let f(n) be the number of partitions of n 

into at most m parts.  Since f is a quasi-polynomial, it is well 

defined for all integers.  Find a combinatorial interpretation 

for f( ) at negative integers.

OMIT: HW: Count terms in coefficients in e^(x f(x))

OMIT: HW: have them conjecture 2nd R-R having seen the 1st

