TODAY:

Prime tilings (omitted in 2001)
Short recurrence for counting triangulations

Short recurrence for counting lattice paths by q-weight

Number partitions (part I)

Please give me feedback on the course: problem-sets (are they


fun? are they relevant to the course material? are they too


time-consuming?), lectures (are there things I could do to


improve?), recitations (are they relevant and helpful?),


web-site (is it easy to use? are the videos useful?), 

computer support for homework (do you get enough of it?), 

or anything else

Even if your feedback concerns things that it’s too late to fix,


let me know anyway, since I may teach this course again 

someday.  
Ask students if I should put books on recommended reading list on 

reserve in Cabot.  What about videos?
Two new assignments, for Tuesday and Thursday (but neither of 

them is too hard)

Prime tilings

Show a picture of a non-prime tiling and a prime tiling.

For m fixed, say a tiling of an m-by-n rectangle is prime if it


cannot be divided into a tiling of an m-by-i rectangle and


a tiling of an m-by-j rectangle, with i+j=n.

Question: How many prime tilings of a 4-by-n rectangle are there?

Let p_n be the number of such tilings, and let P(x) be the g.f.:


P(x) = x + 4x^2 + ...

How could we find P(x)? ...

Method I: u M’ M’ M’ ... M’ M v, where M is the transition matrix


and M’ is a modified transition matrix that prohibits you


from having a break.

Clever trick? ... Clever trick using the fact that we already have 

counted all the tilings of a 4-by-n rectangle? ...
Every tiling of a 3-by-n rectangle can be written in a unique way


as a concatenation of prime tilings.

Hence the g.f. for all tilings of 3-by-n rectangles can be written as


1/(1-P(x)).

But we already know that the g.f. for all tilings of a 4-by-n 


rectangle is Q(x) = (1 – x^2)/(1 – x – 5x^2 – x^3 +x^4).

So P(x) = 1-1/Q(x) = (x + 4x^2 + x^3 – x^4)/(1 – x^2)

= x + 4x^2 + 2x^3 + 3x^4 + 2x^5 + 3x^6 + ...

(You can go back and check this combinatorially.)

Likewise for 3-by-n:

P(x) = 3x + 2x^2 + 2x^3 + 2x^4 + ...

And for 2-by-n:


P(x) = x + x^2 (cf. Q(x) = 1/(1-x-x^2))

For k>4, the number of prime tilings of height k and width n


does not stay bounded as n gets large.

Short recurrence for triangulations

Let T(n) be the number of triangulations of the (n+2)-gon


( = (2n choose n) / (n+1)).

Claim: (n+1) T(n) = (4n(2) T(n(1)

Direct combinatorial proof:

An “edge” is a side or diagonal of the polygon.

Note that there are n(1 diagonals in any triangulation, so the

total number of edges is (n+2)+(n(1)=2n+1.

Call one side of the (n+2)-gon the base.

LHS: Counts ... triangulations of an (n+2)-gon with one of the n+1


... non-base sides marked.

RHS: Counts triangulations of an (n+1)-gon with one of the 

2n-1 ... edges marked and ... oriented.

Bijection from LHS-objects to RHS-objects: Replace the unique 

triangle that borders that side of the (n+2)-gon by an edge 

that points towards the side that was deleted.  

Show it for 4-gons.

Discuss why it’s a bijection.
Short recurrence for counting lattice paths by q-weight

Warm-up: combinatorial interpretation of


(a choose b) b = a (a-1 choose b-1)

Consequence: (a choose b) = (a/b) (a-1 choose b-1)

Put a=m+n, b=m 

(motivation: counting lattice paths from (0,0) to (m,n))

P(m,n) = (m+n)/(m) P(m-1,n)


where P(m,n) = # of lattice paths from (0,0) to (m,n)

This is a special case of a q-version you proved in HW #10:

P(m,n) = ((1-q^(m+n))/(1-q^m)) P(m-1,n)


= ((1+q+...+q^(m+n-1))/(1+q+...+q^(m-1))) P(m-1,n)

(just send q ( 1)

Definition: [n] = 1+q+...+q^(n-1).  We call this the q-analogue 

of n.  (Some authors prefer to use 1-q^n.)  

[1], [2], [3], ... are the q-integers.

(Compare with an earlier definition of [n] as {1,...,n}.  I’ll continue 

to use both, but it should always be clear which one I have in 

mind.)
Digress for a moment: We defined P(m,n) as a sum of weights of


lattice paths, where the weight of a lattice path was defined


as q to the power of the sum of the heights of the horizontal 

edges.  (Give example: compute P(2,2).)  Is there another 

way to think about the weight? ...: q to the power of the area 

under the path.  

Direct proof of 

(1+q+...+ q^(m-1)) P(m,n) = (1+q+...+q^(m+n-1)) P(m-1,n): Motivation: non-q version: m P(m,n) = (m+n-1) P(m-1,n)
LHS: Counts lattice paths from (0,0) to (m,n) with a marked 

horizontal edge, where the area associated with such a 

marked path is defined as its ordinary area plus the 

x-coordinate of the left endpoint of the marked edge.  

RHS: Counts lattice paths from (0,0) to (m-1,n) with a marked 

vertex, where the area associated with such a marked path is 

defined as its ordinary area plus the x-coordinate of the 

vertex plus the y-coordinate of the vertex.

Weight-preserving bijection from LHS-objects to RHS-objects: 

... Replace each marked dot by a marked horizontal edge, 

shifting everything after it to the right.

Do example with (m-1,n) = (1,1), (m,n) = (2,1).

Discuss why it’s a bijection. 

Analysis: Consider a lattice-path from (0,0) to (m,n) with weight 

x^A. When you mark a vertex (i,j) on a lattice-path from 

(0,0) to (m-1,n), you get a vertex-marked path of weight 

x^(A+i+j).  On the other hand, if you replace the marked 

vertex by a marked horizontal edge, you get an edge-marked 

path of weight x^(A+i+j).  

Upshot: P(m,n) = ([n+m]/[m]) P(m-1,n).  

Consequence: P(m,n) = [n+1][n+2]...[n+m]/[1][2]...[m].

P(m,n) is a reciprocal polynomial.  Why? ... Rotating a lattice path


by 180 degrees turns a path of area k into one of area mn-k.

Why do we have P(m,n) = P(n,m) ? ... flip over diagonal joining

(m,0) and (0,n).

So P(m,n) = ([m+n]/[n]) P(m,n-1)

Plugging this into itself, we get

P(m,n) = [m+n][m+(n-1)]...[m+1]/[n][n-1]...[1]

If we define [k]! = [1][2]...[k], we can write


P(m,n) = [m+n]!/[m]![n]!.

Fun problems to study (due a week from today):
How many lattice paths in the m,n rectangle remain the same when 

you rotate by 180?  What is the sum of their q-weights?

How many lattice paths in the m,n rectangle remain the same when 

you flip over the diagonal and rotate by 180?  What is the 

sum of their q-weights?

One thing that’s nice about guessing formulas for products of 

q-integers is that there are more clues to factorization:

[2] [2] = (1+q)(1+q) \not\eq 1+q+q^2+q^3 = [4].  

One tricky thing, though is that [m] often factors; e.g., 

[4] = (1+q)(1+q^2) = [2](1+q^2)

[6] = [2][3](1-q+q^2) 

When you’re doing the homework problem that’s due next 

Thursday, you will find it helpful to rewrite 1+q^2 as [4]/[2], 

1-q+q^2 as [6]/[2][3], etc.

