Bring Cohen

TODAY’S TOPICS:

Stirling orthogonality, done combinatorially

The reflection principle

Tilings and lattice paths

The exchange principle for pairs of paths

Catalan numbers and triangulations

If time permits, at the end I’ll show you a really slick proof of the


3n/(n+2) formula that most of you probably conjectured or

proved for the homework due today.

Recommended reading:

GK&P, 196-204, 306-346: generating functions

East Side, West Side for examples of recursive Maple programs


useful in studying algebraic combinatorics

Stirling orthogonality, done combinatorially

An (n,m,k) gadget is a pair consisting of a partition of [n] into


m blocks and a permutation of those m blocks with k cycles;


its weight is (-1)^{m-k}, so the sum of the weights of all the


(n,m,k) gadgets is S(n,m) s(m,k).

We need a sign-reversing involution \Phi: \gamma -> \gamma’

on the set of gadgets.

Say a cycle in some gadget \gmma is ample if it involves more 

than one element of [n]; that is, it either contains more than

one block or it contains a block of size > 1 (or both).

Since n>k, there is at least one ample cycle in \gamma.

Let x be the smallest element of [n] that lies in an ample cycle.

If x is in a block with other elements of [n], rip x off to form a new


block of size 1, and put it before the old block in the cycle:

\gamma = ...(...{x,a,b,...,i}...)... gives 

\gamma’ = ...(...{x}{a,b,...,i}...)...

If x is in a block of size 1, meld it with the block that follows it


in the cycle:

\gamma = ...(...{x}{a,b,...,i}...)... gives 

\gamma’ = ...(...{x,a,b,...,i}...)...

Check that \Phi is an involution.

Must check that \gamma’ is ample, and that the ample cycle


containing the smallest possible number in [n] still contains


x.

Since \Phi changes the number of blocks by 1, it is sign-reversing:

The weights of \gamma and \gamma’ = \Phi(\gamma) add up to 0.

So we are done.

Review this!

“What if there is no ample cycle?”

The reflection principle

C_n = the number of NE,SE paths from (0,0) to (2n,0) with steps 

(+1,+1) and (+1, 4-1=3 1) that don’t touch the line y=-1.

What’s the total number of paths from (0,0) to (2n,0), regardless


of whether they touch the line or not? ... (2n choose n).

So the number of NE,SE paths from (0,0) to (2n,0) that DO touch


the line y=-1 is (2n choose n) – (2n choose n)/(n+1)


= (2n)!/n!n! [1 – 1/(n+1)] = (2n)!/n!n! [n/(n+1)]


= (2n)!/(n-1)!(n+1)! = (2n choose n-1).

Is there a direct way to count the NE,SE paths from (0,0) to (2n,0)


that DO touch the line?

Yes.

Here is a direct proof: 

Let P be the first point on the path that lies on y=-1.

Draw picture.

Take the part of the path between (0,0) and P and reflect it through


the line y=-1.

Then you get a path from (0,-2) to (2n,0).

Is this a bijection?  Yes!  What’s its inverse?

Conversely, given a path from (0,-2) to (2n,0), let P be the first


point on the path that lies on y=-1 (such a point must exist)


and reflect the part of the path from (0,0) to P through the


line y=-1.

This gives a bijection between 

NE,SE paths from (0,0) to (2n,0) that touch the line y=-1

and


paths from (0,-2) to (2n,0) (unconstrained), with steps


(+1,+1) and (+1,-1).

How many such paths are there?  (2n choose n-1).

This gives us a new derivation of the formula for C_n!

So C_n = (2n choose n) – (2n choose n-1) = 

#(unconstrained NE,SE-paths from (0,0) to (2n,0)) minus

#(NE,SE-paths from (0,0) to (2n,0) that touch the line y=-1).

This can be generalized to give a formula for all the entries in the


Catalan triangle I showed you.

Each entry is a difference of two binomial coefficients.

Did any of you find this?

Tilings and lattice paths

Lattice paths in 3-D:

The number of lattice paths of length a+b+c from (0,0,0) to (a,b,c) 

is ... the multinomial coefficient (a+b+c)!/a!b!c!.

And this extends to higher dimensions straightforwardly.

But a more interesting generalization of lattice paths are


lattice surfaces.

The number of lattice surfaces of area ab+ac+bc whose boundary


is the non-planar hexagon with vertices (a,0,0), (a,b,0), 

(0,b,0), (0,b,c), (0,0,c), (a,0,c)  is ... 

H(a+b+c)H(a)H(b)H(c)/H(a+b)H(a+c)H(b+c) 

where H(n) = 1!2!...(n-1)!.  (We’ll prove this later in the 

semester.) 

These lattice surfaces are in 1-1 correspondence with the ways of


tiling an (a,b,c,a,b,c) semiregular (define this!) hexagon with 

unit rhombuses.

Show picture and discuss; be sure hexagon has vertical sides!

For c=0, the hexagon becomes a parallelogram, and the number of


tilings is ... 1.

For c=1, the number of tilings is (a+b)!/a!b!.

Draw a tiling and the corresponding lattice path.

Why does the lattice path determine the tiling?

Add the dots everywhere, to explain this.

Here’s an analogous  way to count domino tilings of a 2-by-n 

rectangle:

Dana’s trick: color the squares of the 2-by-6

Show how the tiling corresponds to a lattice path 

See how the add-a-dot picture applies to rhombus tilings too

Count the lattice paths via dynamic programming

Wait a minute: why is this a bijection?

Break up into small groups and try it for a 3-by-6.

I’ll give you 5 minutes.

[PAUSE]

Half of the class did it right.

A domino tiling of a 3-by-6 rectangle corresponds to a path in the


DAG (show DAG) that joins the source s to the terminal t.

Compute the answer to be 41.

The other half of the class got stymied, because if you mark dots

the other way, a tiling corresponds to a 2-routing.

A domino tiling of a 3-by-6 rectangle also corresponds to a pair


of paths in the DAG (show DAG) that join s_1 to t_1 and

s_2 to t_2, such that the two paths do not intersect.

Is this a bijection? ... Yes.

We call such a pair of non-intersecting paths a 2-routing through


the DAG.

You could think of an ordinary path as a 1-routing.

How can we count 2-routings?

The exchange principle

We can count 2-routings with a variant of the reflection trick.

How many paths are there from s_1 to t_1 and from s_2 to t_2


that DO intersect each other?

(# of paths from s_1 to t_2) ( (# of paths from s_2 to t_1)

Discuss; stress role of planarity

Proof: Given paths P_1 from s_1 to t_1 and P_2 from s_2 to t_2


that intersect, let q be the leftmost point of intersection.

We exchange the partial paths connecting s_1 with q and 

connecting s_2 with q, obtaining a path P’_1 from s_2 to t_1 

and a path P’_2 from s_1 to t_2.  

Conversely, any two paths that connect s_2 to t_1 and s_1 to t_2

must intersect somewhere, so we can let q be the leftmost

point of intersection and exchange the paths joining the s_i’s

to q, obtaining two intersecting paths that join s_1 to t_1 and

s_2 to t_2.

So the number of 2-routings is 

N(s_1,t_1)N(s_2,t_2) – N(s_1,t_2)N(s_2,t_1).

Check this in the 3-by-6. 

It’s known that for any n, the number of domino tilings of an n by 


2n rectangle is odd.

Mention that Trevor is working on finding a combinatorial proof.

Later in the term you’ll learn how to count 3-routings, 4-routings,


etc., but you might find it fun to play with this now!

