Q: How many sequences of n  +1’s and n  –1’s are there, such that the partial sums are all non-negative 0?

A: C_n, the “nth Catalan number”

C_0 = C_1 = 1, C_2 = 2, C_3 = 5, C_4 = 14, C_5 = 42, ... 

In how many ways can 2n points on a circle be joined by


non-crossing arcs?


C_n!

In how many ways can the expression x*x*x*...*x (with n+1 x’s

be parenthesized?

(x*x)*x
1 2 1 2 1
+1,-1,+1,-1

x*(x*x)
1 2 3 2 1
+1,+1,-1,-1


C_n!

In how many ways can a convex polygon with n+2 sides be 

divided into triangles using diagonals?


[show pictures]

C_n!

Lots of other occurrences, in deeper disguise! 

Let’s find a formula.

Say a sequence of n  +1’s and n  -1’s is “suitable” if every partial sum is non-negative.  Call such a sequence

TRIVIAL if n=0,

PRIMITIVE if n>0 and all the partial sums are positive 

(except for the empty sum and the total sum), and 

COMPOSITE if n>0 and some partial sum is zero


(i.e., the sequence splits up into two or more non-trivial


ballot sequences).

Let 

s(n) = # of suitable sequences of length n,

p(n) = # number of primitive sequences of length n, 

c(n) = # number of composite sequences of length n.  

Create generating functions S(x), P(x), and C(x).  

We have


S(x) = 1 + P(x) + C(x)

(here 1 = 1x^0 + 0x^1 + 0x^2 + ... is the generating function for trivial ballot sequences).


C(x) = S(x) S(x) ?

By the multiplication principle,


C(x) = P(x) (P(x) + S(x)) 

since a composite sequence is a primitive sequence followed by any non-trivial ballot sequence).

Third equation? ...


P(x) = x S(x)

because a primitive sequence consists of a  +1, followed by an arbitrary ballot sequence, followed by a  –1.

Combining the equations, we get


P(x) + C(x) = P(x) (1 + P(x) + S(x)) = P(x) S(x)


S(x) = 1 + P(x) + C(x)

= 1 + P(x) + P(x) (P(x) + S(x))

= 1 + P(x) (1 + P(x) + S(x))

= 1 + P(x) S(x)



(hey, we should have thought of this first!)



= 1 + x S(x) S(x)



= 1 + x S(x)^2.

So




 _____________________



|                                          |

|   x S(x)^2 – S(x) + 1 = 0  |

|_____________________|

Digression: Another way to derive S(x) = 1 + P(x) S(x) is to write

S(x) = 1 + P(x) + P(x)^2 + P(x)^3 + ...


(a convergent series, since P(0)=0)

and then to substitute it into itself:


S(x) = 1 + P(x)(1 + P(x) + P(x)^2 + ...) = 1 + P(x) S(x).

Also note that


S(x) = 1/(1 – P(x)).

Solve the boxed equation:


S(x) = (1 plus-or-minus sqrt(1-4x))/2x



= (1 plus-or-minus (1-2x-2x^2-4x^3-10x^4-...))/2x.

The plus-solution is not a power series at all; it’s a Laurent series


1/x – 1 – x – 2x^2 – ... 

(and I don’t know of any combinatorial interpretation of this spurious solution). 

The other solution is


1 + x + 2x^2 + 5x^3 + ...

which is the one we want.

We find an explicit formula via the binomial theorem:

(1-4x)^(1/2) = sum_n (1/2 choose n) (-4)^n x^n


= sum_n [(1/2)(-1/2)(-3/2)...(-(2n-3)/2)/n!] (-1)^n 2^{2n} x^n


= sum_n [(1)(-1)(-3)...(-(2n-3))/n!] (-1)^n 2^n x^n

Digression: (1)(2)(3)(4)...(2n) = (2n)!


(2)(4)...(2n) = ... 2^n n!


(1)(3)...(2n-1) = (2n)! / (2^n n!)

So the coefficient of x^n in (1-4x)^(1/2) is


(2n)! / (2^n n!) divided by (2n-1) n!

times


(-1)^(n-1) (-1)^n 2^n;

that is, the coefficient is

–  (2n)! / [n! n! (2n-1)] =  –  (2n choose n) / (2n-1).

So the coefficient of x^n in (1-sqrt(1-4x))/2x (for n > 1) is


the coefficient of x^{n+1} in (1-sqrt(1-4x))/2, which is 

(1/2) (2(n+1) choose (n+1)) / (2n+1).


= (2n choose n) / (n+1).

Note that the generating function for the Catalan numbers is algebraic.

Could it be rational generating function?

No:

Reason #1: You can use algebraic methods to show that no rational function R(x) satisfies the boxed equation.

Reason #2: Stirling’s formula implies that the nth Catalan number grows like 4^n  n^{-1.5}.  If the generating function were rational, the exponent –1.5 would have to be a non-negative integer.

Catalan triangle:






1





1

5






1

4

14



1

3

9

28


1

2

5

14

42

1
 
1
 
2

5

14

42

Note diagonals: degree 0, degree 1, degree 2 (check!), ...

For an extra challenge, you might try to conjecture a formula for the entries in this table (hint: each can be expressed as a difference of two binomial coefficients).

Another application of the multiplication principle: Give each horizontal domino weight xt and each vertical domino weight yt. 

Say the weight of a tiling is the product of the weights of the constituent tiles.

Compute the weight of a sample tiling.

Let’s sum the weights of all the domino tilings of all the rectangles!  We obtain such a tiling by concatenating some number (say k) primitive pieces, each of which is either a single vertical domino or a pair of horizontal dominos.  So, if we focus on just the tilings with k primitive pieces (irrespective of the sizes of the rectangles being tiled), the sum of the weights is (x^2 t^2 + y t)^k.

To sum the weights of ALL the tilings, we sum over k:

sum_{k geq 0} (x^2 t^2 + y t)^k = 1 / (1 - x^2 t^2 - y t)

in the ring of formal power series with variables x,y,t.

Now we can change our minds and lump together all the tilings

that have the same total area.  Note that the exponent of t tells the area.  So we want to pay attention to t and set x=y=1.  This gives the generating function 1/(1-t-t^2), which we already knew.

Likewise: Count permutations f:[n]->[n] such that for each i,

|f(i)-i| <= 1.  If we draw a picture of f as a DAG, then our picture breaks up as a sequence of pictures of the form i->i+1->i and i->i.

So, as before, we’re breaking up something of size n into a concatenation of pieces of size 1 and size 2.  Fibonacci again.

BACK TO DIRECTED ACYCLIC GRAPHS

Theorem: Let A be a matrix, and define A_{i,j}(n) as the ijth entry of A^n.  Define the generating function F_{i,j}(t) as


sum_{n geq 0} A_{i,j}(n) t^n.

(Motivate with transfer matrices.)

Then


                    (-1)^{i+j} det(I-tA:j,i)


F_{i,j}(t) = --------------------------- ,


                              det(I-tA)

where (B:j,i) denotes the matrix obtained by removing the jth row

and ith column of B.  Thus in particular F_{i,j}(t) is a rational function of t.

Proof: F_{i,j} is the (i,j)th entry of the matrix 

sum_{n geq 0} t^n A^n ,

which we can check is a multiplicative inverse of I – tA.

Since B=I-tA is invertible, the i,jth element of B^{-1} is

equal to (-1)^{i+j} det(B:j,i) / det B, as claimed.

Theorem: Define the generating function 

T(t) = sum_{n geq 1} Tr(A^n) t^n.

(Motivate with transfer matrices.)

Then


T(t) = - t Q’(t) / Q(t),

where Q(t) = det(I – tA).

Proof: Let omega_1,...,omega_r be the non-zero eigenvalues of A.

Then Tr(A^n) = (omega_1)^n + ... + (omega_r)^n, so


T(t) = (omega_1 t) / (1 – omega_1 t) + ...



+ (omega_r t) / (1 – omega_r t).

When put over the denomiantor (1 – omega_1 t) ... (1 – omega_r t)

= Q(t), the numerator becomes – t Q’(t).

Why do we exclude n=0 from the sum?

Extraneous eigenvalues equal to 0.

Application:

Count domino tilings of a 2-by-n cylinder obtained from the 2-by-n rectangle by gluing the left and right ends (of length 2).

Create a 5-symbol representation, so that the tilings are closed paths.  Get 

Q(t) = (1-t^2) (1-t-t^2),

· t Q’(t) / Q(t) = (2t^2) / (1-t^2) + (t+2t^2) / (1-t-t^2).

At the sequence level,

(1,5,4,9,11,20,...) = (0,2,0,2,0,2,...) + (1,3,4,7,11,18,...)

