BACK TO THE LINEAR ALGEBRA THREAD

(Say a bit about infinite-dimensional vector spaces in general

and the space of polynomials in particular.)
Recall: For all n geq 0,

(x)_n = x(x-1)(x-2)...(x-(n-1)).

(x)_n = sum_{k geq 0} s(n,k) x^k

x^n = sum_{k geq 0} S(n,k) (x)_k

Note that s(n,k), being the coefficient of x^k in (x)_n,
is non-zero precisely when k lies between 1 and n

and has the same sign as (-1)^{n-k}.

s(n,k) is called a signed Stirling number of the first kind.

The non-negative integer c_{n,k} = (-1)^{n-k} s_{n,k} is called a signless Stirling number of the first kind; it equals the coefficient of x^k in the polynomial

f_n (x) = ... x(x+1)(x+2)...(x+(n-1))    

Claim: For all positive integers n,k,

c(n,k) = c(n-1,k-1)+(n-1)c(n-1,k).

Proof: f_n (x)  = f_{n-1}(x) (x+(n-1)).

Theorem: Let S_n be the set of invertible functions

from {1,2,...,n} to itself (“permutations of [n]”).

Then c(n,k) equals the number of elements of S_n

with exactly k cycles.

Proof: Let d(n,k) be the number of elements of S_n

with exactly k cycles.

To show that c(n,k)=d(n,k) for all n,k,

it’s enough to verify that they satisfy the same recurrence

(and to check that the base cases are the same).

Base cases (n=0 or k=0): Proof omitted.

Recurrence: Given any permutation of [n-1] with k cycles,

there are n-1 ways to add the element n into an existing cycle;

given any permutation of [n-1] with k-1 cycles,

there’s a unique way to create a new cycle

consisting of just the element n.

Every permutation of [n] with k cycles 

arises exactly once in this way.

Hence d(n,k) = (n-1)d(n-1,k)+d(n-1,k-1),

which is the same as the recurrence governing the c(n,k)’s.

Thus c(n,k) counts the number of lattice paths from (1,1) to (n,k)

in the DAG where there is 1 arc from (n-1,k-1) to (n,k)

and there are n-1 arcs from (n-1,k) to (n,k) for all n,k

(and no other arcs)

k=4
  0   >  0 >>  0>>> 1

                /        /         /

k=3
  0   >  0 >>  1>>> 6

                /        /         /

k=2
  0  >   1 >>  3>>>11

                /        /        /

k=1
  1  >   1 >>  2>>> 6


n=1
n=2
n=3
n=4

S(n,k) = Stirling number of the second kind = number of partitions of [n] ... = {1,2,...,n} with k blocks.

Claim: S(n,k) = S(n-1,k-1) + kS(n-1,k).

Proof: Given a partition of n into k blocks, removing n gives rise to a partition of [n-1] into k-1 blocks (if n was in a block by itself) or k blocks (otherwise).  Conversely, every partition of [n-1] into k-1 blocks gives rise to 1 partition of [n] into k blocks, and every partition of [n-1] into k blocks gives rise to k partitions of [n] into k blocks.  Each partition of [n] into k blocks arises precisely once in this fashion. 

Claim: 

(*) sum_{n geq k} S(n,k) x^n = x^k / (1-x)(1-2x)...(1-kx).

Sketch of proof of (*) by induction:

Write S_k (x) = sum_n S(n,k) x^n.

Check (*) for k=1.

Use the recurrence relation to write

S_k (x) = (x S_{k-1} (x) + kx S_{k} (x).

Rewrite as


S_k (x) = (x / (1-kx)) S_{k-1} (x).

Use induction hypothesis to conclude


S_k (x) + (x / (1-kx)) (x / (1-(k-1)x) ... (x/(1-x)).

OMIT:

Induction step: Suppose it’s true for k-1.  

By the recurrence relation for S(n,k), we have

S_k (x) = sum_n S(n,k) x^n 

= sum_n (S(n-1,k-1) + kS(n-1,k)) x^n

= sum_n (S(n,k-1) + kS(n,k)) x^{n+1}

= x sum S(n,k-1) x^n + kx sum S(n,k) x^n

= x S_{k-1} (x) + kx S_{k} (x)

(1 – kx) S_{k} (x) = x S_{k-1} (x)

S_{k} (x) = (x/(1-kx)) S_{k-1} (x)

= (x/(1-kx)) x^{k-1} / (1-x)(1-2x)...(1-(k-1)x)


(by the induction hypothesis)



= x^k / (1-x)(1-2x)...(1-kx),

as claimed.

RESUME

The representation (x/(1-x))(x/(1-2x))...(x/(1-kx))

suggest a combinatorial proof of (*).

But first, some combinatorial background.

Addition Principle: Suppose every “Alice-sequence” of length n is either a “Bob-sequence” or a “Carol-sequence” (but not both).  Then A(x) = B(x) + C(x), where A(x), B(x), C(x) are the respective generating functions for the number of Alice-, Bob-, and Carol-sequences of length n.

Proof: Write 

A(x) = sum_n a(n) x^n, 

where 

a(n) = # of Alice-sequences of length n, 

and similarly for B(x) and C(x);

A(x) = B(x) + C(x)   equiv   (forall n) a_n = b_n + c_n .

Multiplication Principle: Suppose every “Alice-sequence” can be written in a unique way as an “Bob-sequence” followed by a “Carol-sequence.  Then A(x) = B(x) C(x), where A(x), B(x), C(x) are the respective generating functions for Alice-, Bob-, and Carol-sequences (and similarly for composite sequences made by concatenating three or more sequence-types).

Proof: With a(n), b(n), and c(n) as before, 

A(x) = B(x) C(x)   equiv  (forall n) 

a_n = b_0 c_n + b_1 c_{n-1} + b_2 c_{n-2} + ... + b_n c_0. 

The Addition and Multiplication Lemmas extend to situations involving three, four, ... different kinds of sequences.

Combinatorial proof of (*):

Given a partition of [n] into k parts, let 

B_1 = the part that contains 1, 

B_2 = the part that contains the smallest number not in B_1, 

B_3 = the part that contains the smallest number nt in B_1 or B_2, 

etc.  Every partition of [n] with exactly k parts can be specified by a codeword of length n in which the ith symbol is j precisely if

i belongs to B_j.  E.g., {{1,3},{2,5},{4}} is coded by (1,2,1,3,2).

Conversely, every codeword of length n corresponds to a unique partition of [n], provided the codeword contains each of the symbols 1,...k at least once, and j+1 does not occur in the sequence until the first j, for j=1,...,k-1.

We break up each codeword into k subwords, where the jth subword is everything from the first j up to right before the first j+1 (if a j+1 occurs at all).  E.g., (1,2,1,3,2,4,2,5,1,3,6,5) becomes (1;2,1;3,2;4,2;5,1,3;6,5).  The jth subword consists of a j followed by some number of elements between 1 and j.  Call such a subword a j-string.  Every legal codeword consists of a 1-string, followed by a 2-string, ..., followed by a k-string.  The number of possible j-strings of length m is j^{m-1}, for every m geq 1; the gen. fun. for this is x/(1-jx).  Hence by the (generalized) Multiplication Lemma, the gen. fun. for codewords is (x/(1-x))...(x/(1-kx)), which proves (*).

Here’s an important application of the addition and multiplication principles:

Q: How many sequences of n  +1’s and n  –1’s are there, such that the partial sums are all non-negative 0?

A: ... 1, 1, 2, 5; ... 14, ...

These are called Catalan numbers;

they come up as often as Fibonacci numbers.

Note rephrasings:

(a) How many lattice paths from (0,0) to (2n,0), with steps (+1,+1) and (+1,-1), never go below the line y=0?  (These are sometimes called Dyck paths.)

(b) How many lattice paths from (0,0) to (n,n), with steps (0,1) and (1,0), never go below (or above) the line y=x?

(c) How many sequences of n+1  +1’s and n  –1’s are there, such

that the partial sums are all positive?

(d) If candidate A got 1 more vote that candidate B, in how many orders can the ballots be read so that candidate A is always ahead?  (We aren’t distinguishing among the A-ballots or among the B-ballots.)

