Put on board:

Lightly suggested reading, if you’re planning to use this stuff: 

GKP, pp. 47-56 (more than we need)

GKP, pp. 153-172 (uses convergent power series instead of fps)

For more on Stirling numbers, see

GKP, pp. 243-255

PLAN FOR TODAY:

FIRST


loose ends from last time

THEN


Stirling numbers

But, before that even:

QUESTIONS?

Did anyone work out the limiting value of p’_n (1) / n p_n (1)? ...

sum p’_n (1) x^n = x / (1 – x – x^2)^2.

With s = (1+sqrt(5))/2 and t = (1-sqrt(5))/2, we get

p’_n (1) = ((sqrt(5)+1)/10) n s^n + (2 sqrt(5) / 25) s^n

     – ((sqrt(5)–1)/10) n t^n  – (2 sqrt(5) / 25) t^n

p’_n (1) approx ((sqrt(5)+1) / 10) n s^n = (s/5) n s^n

p_n (1)  approx (1/sqrt(5)) s^(n+1) = (s/sqrt(5)) s^n

p’_n (1) / n p_n (1)  converges to  sqrt(5)/5 = .447...

That is, if you pick at random one of the tilings

of the 2-by-n rectangle, when n is very large,

the proportion of the rectangle that is covered by vertical dominos

converges to about 44.7 percent.

The point is not the specific value;

the point is that it has to be algebraic,

and we could see this ahead of time.

So 1/e is out.

Mention that a law of large numbers applies.

You can use ... the second derivative in order to get

an estimate of the variance, and it’s fairly small.

Another look at paths through the digraph (thanks to Gregg):

Put M = [[1,1],[1,0]]

Look at the matrix sum_{n=0}^{infinity} M^n x^n,

its entries are formal power series in x,

and if you add them up, you get the generating function

for paths from the left to the right.

But we could also view this infinite sum as ...

= sum_{n=0}^{infinity} (Mx)^n = (I-Mx)^{-1}.

I-Mx = [[1-x,0-x],[0-x,1]],

det(I-Mx) = 1-x-x^2 (aha!),
(I-Mx)^{-1} = [[1,x],[x,1-x]]/(1-x-x^2)

sum of entries = (1+x+x+1-x)/(1-x-x^2) = (2+x)/(1-x-x^2)

the sequence of coefficients of this generating function

must be a generalized Fibonacci sequence;

in fact, it’s just the shifted Fibonacci sequence 2,3,5,8,...

The Cayley-Hamilton Theorem:

Let M be a matrix with characteristic polynomial

p(t) = det(tI-M)

(its roots are the eigenvalues of M).

Then p(M)=0.

(Proof later, by combinatorics!)

Example: M = [[a,b],[c,d]].

tI-M = [[t-a,-b],[-c,t-d]]

det(tI-M) = (t-a)(t-d)-bc = t^2 – (a+d)t + (ad-bc).

M^2 = [[a^2+bc,ab+bd],[ac+cd,bc+d^2]]

(a+d)M = [[a^2+ad,ab+bd],[ac+cd,ad+d^2]]

(ad-bc)I = [[ad-bc,0],[0,ad-bc]]

M^2 – (a+d)M + (ad-bc)I = 0.

Note that the preceding equation remains true

if we multiply it through by M^n.  So:

Corollary: Write p(t) = t^m + a_{m-1} t^{m-1} + ... + a_0.

The sequence of matrices I,M,M^2,M^3,...

satisfies the linear recurrence relation

M^{n+m} + a_{m-1} M^{n+m-1} + ... + a_0 M^{n} = 0

expressing each power of M as a linear combination

of the preceding m powers of M.

Theorem: 

Restatement of what I did last time, in a more formal way.

Suppose the vertex set of the directed acyclic graph G 

is of the form V(G) = V_0 union V_1 union ... union V_m

with all sets V_i, V_j disjoint

and with all arcs going from V_i to V_{i+1} for some i.

Suppose also we have a map f on V(G)

whose restriction to V_i is a bijection from V_i to V_{i+1},

for each i geq 1.

Suppose that for all u,v in V(G)

there is an arc from u to v iff

there is an arc from f(u) to f(v). 

That is, the pattern of connections

between V_i and V_{i+1} is independent of i.

Fix vertices x,y in V_0 

and let y_0 = y, y_1 = f(y_0), y_2 = f(y+1), ...

Then 

N(x,y_0), N(x,y_1), N(x,y_2), ...

satisfies a dth order linear recurrence equation,

where d = |V_0| = |V_1| = ... .

Specifically, the recurrence relation is given by

the characteristic polynomial of the transfer matrix

from V_0 to V_1.

Proof: Let M be the d-by-d transfer matrix from V_0 to V_1.

Then N(x,y_k) is just the x,yth entry of the matrix M^k.

By the Cayley-Hamilton Theorem,

M^n + a_1 M^{n-1} + ... + a_n M^{n-d} = 0

for all n;

taking the (x,y)th entry of this matrix equation, we get

N(x,y_n) + a_1 N(x,y_{n-1}) + ... _ a_n N(x,y_{n-d}) = 0.

which is the desired dth order equation.

By using N(x,y) to mean the number of paths from x to y,

we’re committing ourselves to using transfer matrices

that correspond to a mapping 

FROM the set of rows TO the set of column.

So we’ll pre-multiply matrices by row-vectors

more often than we’ll post-multiply by column-vectors,

contrary to what I said last time that I prefer.

Domino tilings of the 2-by-n rectangle (again)

Use cell-labels L, R, T, B

Give example of a tiling of a 2-by-5 with labeled cells

Frontiers: LL, LR, RL, RR, TB

Represent the sample tiling as a path in a digraph

Transfer matrix:


LL
LR
RL
RR
TB

LL
0
0
0
1
0

LR
0
0
1
0
0

RL
0
1
0
0
0

RR
1
0
0
0
1

TB
1
0
0
0
1

A tiling of a 2-by-n rectangle is from V_0 to V_{n-1}

that starts at LL or TB and ends at RR or TB.

Notice: ... noncommunicating entries!

We can restrict the DAG to entries that communicate

with LL, RR, and TB and obtain a 3-by-3 transfer matrix M =


LL
RR
TB

LL
0
1
0

RR
1
0
1

TB
1
0
1

  

  t
-1
 0

tI-M=
-1
  t
-1

  

-1
 0
t-1

Det(tI-M) = t^2 (t-1) –1–(t-1) = t^3 – t^2 – t 

The roots of the characteristic polynomial are

the golden ratio, its negative reciprocal, and 1.

So the number of paths of length n through the digraph

is the nth term of a generalized Fibonacci sequence

plus a constant.

The constant vanishes; is there a way to see this ahead of time? ...

Theorem: Suppose we have a finite set of tile-shapes

(assume each tile is a connected union of unit squares).

We want to tile rectangles with copies of these tiles

(where a tile is a translate of one of the original “prototiles”).

Suppose all of the prototiles taken together have area A.   

Restrict attention to tilings of an H-by-n rectangle,

with height H fixed and length n varying.

Then the sequence whose

nth term is the number of tilings of the H-by-n rectangle 

is governed by an LRE of order ... A^H.

Usually, we can do a lot better.

Since the second homework problem due Tuesday

asks you to do better than this,

let me show you an approach that’s more economical.

Domino tilings of the 2-by-n rectangle (yet again)

Use labels based on vertical cuts:

which ones cut through a domino? 

Draw the 2-level DAG

BACK TO THE LINEAR ALGEBRA THREAD

(Say a bit about infinite-dimensional vector spaces in general

and the space of polynomials in particular.)
Recall that two natural bases for polynomials are


1, x, x^2, x^3, ...

and


1, (x)_1, (x)_2, (x)_3, ...

where (x)_n = x(x-1)(x-2)...(x-(n-1)).

Put

(x)_n = sum_k s(n,k) x^k

and

x^n = sum_k S(n,k) (x)_k.

Here k ranges over all non-negative integers

but s(n,k) vanishes when k > n

(so that each of these sums is actually finite).

When you have change-of-basis matrices in each direction,

you have a relationship between them.

Fact: For all natural numbers n,k

sum_m S(n,m) s(m,k) = delta_{m,n} = {m=n} =

sum_m s(n,m) S(m,k).

The (infinite) change-of-bases matrices are both upper triangular,

so that we can multiply them purely formally,

without having to ever consider infinite sums.

But is this combinatorics?

Yes?

We saw two lectures ago that this holds

when S(n,k) is the number of partitions of [n] ... = {1,2,...,n}

with k blocks.

(Review: When x is an integer,

the left hand side counts the number of functions

from an n-element set to a x-element set;

if you look at those functions that take on exactly k distinct values,

you find that there are S(n,k) (x)_k of them.)

We call S(n,k) a Stirling number of the second kind.

What about s(n,k)?

Theorem: Let S_n be the set of invertible functions

from {1,2,...,n} to itself (“permutations of [n]”).

Then |s(n,k)| equals the number of elements of S_n

with exactly k cycles.

