Questions?

TODAY:


Weighted enumeration


Paths in directed graphs


Applying Cayley-Hamilton

“If we tile a 2-by-n rectangle with dominos,

what fraction of the tiles will be vertical?”

... Right; it depends.  How could I rephrase the question?

... Right; “on average”.  What do you think?

... Half?  How many think half?

Counting with polynomials instead of numbers:

If a domino tiling with k vertical dominos has weight w^k, then

the “number” of domino tilings of the 2-by-3 rectangle

is 2w^1+w^3.

Let p_n (w) be the sum of the weights of the domino tilings

of the 2-by-n rectangle, so that


p_0 (w) = ... 1


p_1 (w) = ... w


p_2 (w) = ... 1 + w^2


p_3 (w) = ... 2w + w^3


...

p_n (1) is the total number of tilings of the 2-by-n rectangle, and

p’_n (1) is the total number of vertical tiles in all these tilings,

so the average number of vertical tiles in a tiling is 

p’_n (1) / p_n (1) .

We already know a formula for p_n (1) (it’s a Fibonacci number); 

what about p’_n (1)? 

We have ... p_n = w p_{n-1} + p_{n-2}.

Put ... P = P(w,x) = sum p_n (w) x^n


= 1 + (w) x + (1+w^2) x^2 + (2w+w^3) x^3 + ...

Then our recurrence relation gives us


(1 -  wx - x^2) P(w,x) = ... 1 

so


P(w,x) = 1 / (1 – wx – x^2).

sum p’_n (w) x^n = (d/dw) 1 / (1 – wx – x^2) 

  = x / (1 – wx – x^2)^2.

sum p’_n (1) x^n = x / (1 – x – x^2)^2.

(Is this the same as substituting w=1 and then differentiating? ...)

One can use this to get a formula for p’_n (1) / p_n (1).

We’ll come back to this at another time.

SKIP AHEAD?

(Combinatorial interpretation of a_0 = a_1 = x, etc.?)

RESUME

COUNTING PATHS

Problem: How many length-n sequences of 0’s and 1’s are there

such that no two 1’s occur consecutively?

Call this A_n.

A_0 = 1, A_1 = 2, A_2 = 3, A_3 = 5, ...

Equivalently, how many length-n paths (define) are there

through the following network?

Draw picture, with sources and sinks marked.

``Dynamic programming’’

Illustrate, working backwards.

A finite DAG (directed acyclic graph) is a finite set of vertices

with arcs connecting one vertex to another, such that

two vertices are linked by only finitely many arcs, and

there are no infinite paths.

In any finite DAG, there are 

only finitely many paths

connecting any two vertices.

Write N(x,y) as the number of paths from x to y.

Note N(x,x) = 1 for all x.

Example: G = {(i,j): i,j geq 0}, arcs connect (i,j) to (i+1,j), (i,j+1)

N((0,0),(m,n)) = (m+n)!/m!n! (binomial coefficients).

{2n choose n} = {n choose k} {n choose k}.

(Later: Catalan paths.)

Theorem: Suppose G is a finite DAG,

x,y are vertices of G,

and B is a set of vertices with the property that

every path from x to y passes through

exactly one vertex in B.

Then N(x,y) = sum_{b in B} N(x,b) N(b,y).

More generally,

suppose A is the set of sources (define) in G

and C is the set of sinks (define) in G,

and that B has the property that

every path from A to C passes through

exactly one vertex in B.

Define the transfer matrix N(A,B) as the matrix

whose (a,b) entry is N(a,b),

and define matrices N(B,C), N(A,C) similarly. 

Then


N(A,C) = N(A,B) N(B,C). 

Return to example with periodic graph.

Theorem: Suppose the vertex set of G is of

the form V(G) = V_0 union V_1 union ... union V_m

with all sets V_i, V_j disjoint

and with all arcs going from V_i to V_{i+1} for some i,

and suppose that every path from V_1 to V_m

passes through exactly one vertex 

in each of the sets V_1,...,V_{m-1}.

Suppose furthermore that the pattern of connections

between V_i and V_{i+1} is independent of i.

Then the transfer matrix from V_i to V_{i+1} is independent of i,

and the transfer matrix from V_0 to V_m

is equal to the mth power of the transfer matrix

from V_0 to V_1.

Theorem: Let G be a semi-infinite DAG

with the symmetry property of the preceding theorem.

Fix a vertex x in V_0 

and vertices y_0, y_1, y_2, ... in Y_0, Y_1, Y_2

that are related by the symmetry.

Then the sequence N(x,y_0), N(x,y_1), N(x,y_2), ...

satisfies a dth order linear recurrence equation,

where d = |V_0| = |V_1| = ...

Mention how the example illustrates this.

Proof: Let M be the d-by-d transfer matrix from V_0 to V_1,

and write y = y_0.

Then N(x,y_k) is just the x,yth entry of the matrix M^k.

By the Cayley-Hamilton Theorem,

the matrices M^0=I, M^1=M, M^2, M^3, M^4, ..., M^d

satisfy the linear recurrence relation

M^d + a_1 M^{d-1} + ... + a_n M^{0} = 0,

where t^d + a_1 t^{d-1} + ... + a_n = 0

is the characteristic polynomial of M

(that is, this polynomial is equal to det (tI-M)).

Later in the course, we’ll see a combinatorial proof

of the Cayley-Hamilton Theorem.

It follows that M^n + a_1 M^{n-1} + ... + a_n M^{n-d} = 0

for all;

taking the (x,y)th entry of this matrix equation, we get

N(x,y_n) + a_1 N(x,y_{n-1}) + ... _ a_n N(x,y_{n-d}) = 0,

which is the desired dth order equation.

Work this out explicitly for the Fibonacci example

Re-do domino tilings of the 2-by-n, using cell-labels

Re-do domino tilings of the 2-by-n again, using labels based on vertical cuts.

