Switch gears:

Leave aside recurrence relations and matrices

and do some more with algebra

in the ring of formal power series.

Let’s go back and prove the general binomial theorem.

Theorem: For any formal powers series f(x), define

(1+xf(x))*r = 1 + [r] x f(x) + [r(r-1)/2] x^2 f(x)^2 

+ [r(r-1)(r-2)/6] x^3 f(x)^3 + ...

(1) The RHS is convergent.

(2) When r is a non-negative integer, (1+xf(x))*r = (1+xf(x))^r.

(3) (1+xf(x))*r (1+xf(x))*s = (1+xf(x))*(r+s).

(4) When r is a negative integer, (1+xf(x))*r = (1+xf(x))^r.

(5) ((1+xf(x))*r)*s = (1+xf(x))*(rs).

Proof:

(1) Easy.

(2) This is the standard binomial theorem.

(3) For any k, the coefficient of x^k in (1+xf(x))*r (1+xf(x))*s

is a polynomial P_k(r,s) of degree k in r and s.  

E.g., for k=2, it’s [1][s(s-1)/2]+[r][s]+[r(r-1)/2][1].

Likewise the coefficient of x^k in (1+xf(x))*(r+s)

is a polynomial Q_k(r,s) of degree k in r and s.

We know that P_k(r,s) = Q_k(r,s)

whenever r and s are non-negative integers.

But this implies that P_k(r,s) = Q_k(r,s) for all real r,s.

(4) By (3), (1+xf(x))*r (1+xf(x))*(-r) = (1+xf(x))*0,

which by (2) is equal to 1.

(5) Same reasoning as (3).

(From now on, we’ll write g*r as g^r, for any g with g(0)=1.)

So (1-x)^(-m) = 1+[-m](-x)+[(-m)(-m-1)/2](-x)^2




+[(-m)(-m-1)(-m-2)/6](-x)^3 + ...



= 1 + [m](x) + [(m)(m-1)/2] x^2 

+ [(m)(m+1)(m+2)/6] x^3 + ...



= sum_{n=0}^{infinity} {m+n-1 choose n} x^n

Note that we have

{-m choose 2} = {m+1 choose 2},

{-m choose 3} = {m+2 choose 3},


etc.

Later in the course we’ll learn 

how to interpret these assertions combinatorially,

using signed enumeration.

For now, just Note that (1-x)^(-m) is the generating function for

f(n) = {m+n-1 choose n}.

(We’ll use this fact soon.)

The solutions to (T-rI)^m (f) = 0 

form a subspace of sequence space.

One basis is given by the functions 

f(n) = r^n, f(n) = n r^n, ..., f(n) = n^{m-1} r^n.

But generating functions suggest another natural basis...

Remember that the solutions have generating functions

of the form p(x)/(1-rx)^m,

where p(x) is a polynomial of degree < m.

A natural basis for this space of rational functions

is ... 1/(1-rx)^m, x/(1-rx)^m, ..., x^{m-1}/(1-rx)^m.

(Recall Aaron’s comment from yesterday,

about how these coefficients encode the initial conditions.)

Another natural basis is

1/(1-rx)^m, (1-rx)/(1-rx)^m, ..., (1-rx)^{m-1}/(1-rx)^m,

or (written in reverse order)

1/(1-rx), 1/(1-rx)^2, 1/(1-rx)^3, ... 1/(1-rx)^m.

These correspond to the following solutions

of (T-rI)^m (f) = 0: 

f_{r,k}(n) = {k+n-1 choose n} r^n

An important example of this basis comes from the case r=1:


f_{1,1}(n) = 1,


f_{1,2}(n) = n+1,


f_{1,3}(n) = (n+1)(n+2)/2,


...

Here’s an even more important basis:


1,


n,


n(n-1)/2,


n(n-1)(n-2)/6,


...

Why is this a good basis for the space of polynomials?

(This is a subspace of the space of formal power series.)

Suppose we know that a sequence is given by a cubic polynomial,

but we don’t know its coefficients.

How do we find them?

E.g., the sequence 0, 1, 5, 15, 34, 65, 111, ... 

(with initial term indexed as term 0).

Note that if p(n) = an^3 + bn^2 + cn + d,

then p(n+1)-p(n) = a((n+1)^3-n^3)+b((n+1)^2-n^2)+c((n+1)-n)+0


= a polynomial in n of degree 2.

Difference tables:


0

1

5

15

34

65





1

4

10

19

31





3

6

9

12






3

3

3

How can we use the initial numbers 0 1 3 3 to reconstruct

the formula for f(n)?

Look at the difference-tables for the function 1, n, n(n-1)/2, and


n(n-1)(n-2)/6:

1:


1

1

1

1



0

0

0

0 0

0

n:


0

1

2

3



1

1

1

0 0

0

n(n-1)/2:


0

0

1

3



0

1

2

1 1

0

n(n-1)(n-2)/6:


0

0

0

1



0

0

1

0 1

1

So a cubic polynomial whose difference table has rows that begin

0, 1, 3, 3, ... must equal 0(1)+1(n)+3(n(n-1)/2)+3(n(n-1)(n-2)/6)

=(1)n+(3/2)n^2-(3/2)n+(3/6)n^3-(9/6)n^2+(6/6)n

=(1/2)n^3+(1/2)n=(n^3+n)/2.

Fact: The polynomials 1, t, t(t-1)/2, t(t-1)(t-2)/6, ... form an integral

basis for the set of polynomials p(t) with the property that p(n) is an integer for all integers n.

Explain “integral basis”.

These functions form the “falling factorial basis” for the space of polynomials, just as the polynomials 1, t, t^2, t^3, ... form the “monomial basis” for the space of polynomials.

One often writes (t)_0 = 1, (t)_1 = t, (t)_2 = t(t-1)/2, ...

Whenever you have several natural bases,

change-of-basis formulas come into play.

In the homework, you’ll be asked to establish

some relationships between two such bases.

A week from today,

we’ll see some very interesting combinatorics arising

from the change-of-basis between

the monomial and falling-factorial bases.

To finish today, let’s introduce linear functionals

and use them to solve a different combinatorial problem:

counting partitions of a set.

Here are the partitions of the set {a,b,c}:


{{a,b,c}}

(one block)


{{a,b},{c}}
(two blocks)


{{a,c},{b}}
(two blocks)


{{b,c},{a}}
(two blocks)


{{a},{b},{c}}
(three blocks)

We let B_n (the nth “Bell number”) be the number of partitions

of a set with n elements.

Thus B_3 = 5, B_2 = 2, B_1 = ... 1, B_0 = ... 1 (by convention)

We want a formula for B_n.

We’ll get to the formula by a circuitous route,

starting from a Seemingly unrelated problem:

How many functions are there

taking an n-element set N into an m-element set M?

(Assume m > 0.)

On the one hand, the answer is m^n.

On the other hand, note that each function f from N into M

determines a partition \pi of N into blocks,

where two elements x,y of N are in the same block

iff f(x)=f(y).

Can you reconstruct f from \pi? ... No.

Given pi, how many such f’s are there? ...

If we let k be the number of components of \pi,

then the number of f’s compatible with \pi

is m(m-1)...(m-k+1)

(which incidentally vanishes when m<k;

why is this appropriate? ...).

If we let P_n,k be the number of partitions of 

the n-element set N into k parts,

we have

m^n = sum_{k=1}^n P_n,k m(m-1)...(m-k+1).

Example (n=3):

m^3 = P_3,1 m + P_3,2 m(m-1) + P_3,3 m(m-1)(m-2)


= 1 m + 3 m(m-1) + 1 m(m-1)(m-2).

Since this is true for all positive integers m,

it’s true for all real numbers, and we can write

x^3 = 1 x + 3 x(x-1) + 1 x(x-1)(x-2)

as an algebraic identity.

More generally,

(*) x^n = sum_{k=1}^n P_n,k (x)_k.

We define a linear functional from the space of polynomials

to the (1-dimensional) space of scalars

with the property that L( (x)_k) = 1 for all k.

Then, applying L to both sides of the equation (*)

we get L(x^n) = sum_{k=1}^n P_n,k = B_n.

That is:


B_n = L(x^n).

Now, for one of the few times in this course,

we use something that goes beyond mere algebra

and genuinely involves calculus.

Namely, we write

L((x)_n) = 1 = (1/e) e = (1/e) sum_{k=0}^{infinity} (k)_n / k! .

Using the fact that the polynomials (x)_n form a basis

for the vector space of polynomials,

and the fact that the functional L is linear, we infer that

L(p(x)) = (1/e) sum_{k=0}^{infinity} p(k) / k!.

E.g., since


L(x) = (1/e) sum_{k=0}^{infinity} k / k!

and


L(x(x-1)) = (1/e) sum_{k=0}^{infinity} k(k-1) / k!

we can add to get


L(x^2) = (1/e) sum_{k=0}^{infinity} k^2 / k!

(the case p(x) = x^2).

Now, more generally, set p(x) = x^m:

B_m = L(x^m) = (1/e) sum_{k=0}^{infinity} k^m / k!


= (1/e) (1^m / 1! + 2^m / 2! + 3^m / 3! + ...)

(Dobinski’s formula)

