Collect homework; handout solutions and new problem sets

Remind students: time spent, collaborators consulted

Lectures: Tues. and Thurs., 2:30-4:00, Sever 103

Sections (optional): Mon., 5-6, Sci. Ctr. 309

My office hours: Tues. and Weds., 1:30-2:00, Sci. Ctr. 435.


(Or cafe?)

CA’s office hours: Weds., 8-9 (a.m. or p.m.?), math lounge


(4th floor of Science Center)

Taping on Wednesday, 12:30-2:00, Sci. Ctr. E.

No class on Thursday

Assignments #3 and #4 due in class next TUESDAY

Due date for take-home midterm: Thurs., November 1 (?)

Has Knuth et al. come in yet?

Any questions about the solutions to the homework problems in

assignment #1? ...

Did anyone find a mistake in my solution to the homework? ...

Today we’ll continue the background on recurrence relations

and generating functions,

and we’ll begin to be able to apply them to combinatorics.

Note: The sequence of Fibonacci numbers is annihilated by

the operator ... T^2-T-I, and the generating function has denominator equal to ...1-x-x^2.  There is a correspondence here, but the exponents go in the opposite direction from one another.

Fact: Suppose a_0,...,a_d are numbers with a_0 and a_d non-zero,

and f is some sequence.

The following are equivalent:

(1) f satisfies.

(a_d T^d + a_{d-1} T^{d-1} + ... + a_1 T + a_0 I) f = 0

(2) The generating function for f can be expressed

as a rational function whose denominator is

a_d + a_{d-1} x + a_{d-2} x^2 + ... + a_1 x^{d-1} + a_0 x^d.

(3) f(n) is expressible as a linear combination of

functions of the form n^j r^n,

where r is a root of 


a_d t^d + ... + a_1 t + a_0

and where j is a non-negative integer that is less than

the multiplicity of the root r.

(When r=1, these fundamental solutions are just monomials,

and the general solution is a polynomial of degree <d.)

Say you encounter a sequence


1, 2, 5, 12, 29, 70, ...

and you suspect it satisfies a linear recurrence;

what should you do? ...

Use undetermined coefficients:

5=1A+2B

12=2A+5B

29=5A+12B

...

A=1, B=2.

What other recurrences does it satisfy?

Important facts: 

(1) If p(T)(f)=0, and q(t) is a multiple of p(t),

q(T)(f)=0 as well.

(2) For any sequence f that satisfies a linear recurrence


with constant coefficients,


there exists p(t) such that q(T)(f)=0


for precisely those polynomials q()


that are divisible by p().

Group work:

Find a recurrence relation satisfied by g(n)=F_n+2^n (n geq 0).


1,1,2,3,5,...


1,2,4,8,16,...


2,3,6,11,21,...

Answer: ... (1-t-t^2)(1-2t)=1-3t+t^2+2t^3

g(n+3)-3g(n+2)+g(n+1)+2g(n)=0

g(n+3)=3g(n+2)-g(n+1)-2g(n)

Check:


11=3(6)-(3)-2(2) 

21=3(11)-(6)-2(3)

etc.

More explicitly, we have 

1/(1-x-x^2) + 1/(1-2x) = (2-3x-x^2)/(1-3x+x^2+2x^3).

To see that this is the simplest possible recurrence, ...

you have to check that the numerator and denominator

(as polynomials in x) have no common factor.

Alternatively, check that the determinant

| 2   3   6|

| 3   6 11|

| 6 11 21|

doesn’t vanish (in fact, it equals 1).

(Explain why this is valid.)

  OMIT (not enough time):

  #2. Find a recurrence relation satisfied by h(n)=F_{2n}. 


1,2,5,13,34,...

  Anwer: ... Let’s cheat for a second and use Binet’s theorem, 

  but only conceptually.

  F_n = Ar^n+Bs^n, so F_{2n}=Ar^{2n}+Bs^{2n}.

  Here the basic solutions are (r^2)^n and (s^2)^n.

  So we need to find a polynomial whose roots are r^2 and s^2,

  given that r and s are the roots of t^2-t-1=0.

  That is, we want a linear relationship among 1,t^2,t^4,...

  given that t^2=t+1.

  If t^2=t+1 then t^4=(t+1)^2=t^2+2t+1=(t+1)+2t+1=3t+2

  3t+2 can also be written as 3(t+1)-1=3t^2-1.

  So t^2=t+1 implies t^4=3t^2-1, or t^4-3t^2+1.

  So u=r^2 and u=s^2 are roots of  u^2-3u+1.

  Hence h(n+2)-3h(n+1)+h(n)=0, and h(n+2)=3h(n+1)-h(n).

  Check:


5=3(2)-1


13=3(5)-2


34=3(13)-5


etc.

  OR: Take 1/(1-x-x^2) and 1/(1+x-x^2) and average;

  then replace x^2 by x.

Problem: Solve the non-homogeneous linear recurrence relation

f(n+2)=f(n+1)+f(n)+1 with initial conditions f(0)=f(1)=1.


1,1,3,5,9,15,25,...

(or reduce it to a problem of solving for a small number

of undetermined coefficients).

Answer: Apply T-I to both sides of (T^2-T-I)f=1,

obtaining (T^3-2T^2+1)f=0, or T^3 f = 2T^2 f – f.

Check: 25 = 2(15)-5.

What are the fundamental solutions to this recurrence? ...

The fundamental solutions are r^n, s^n, and 1.

So the solution can be written in the form

A F_n + B F_{n-1} + C.

Problem: Find a formula for G_n, 

where G_n = F_1 + F_2 + F_3 + ... + F_n:


1,3,6,11,19,...

(or reduce it to a problem of solving for a small number

of undetermined coefficients).

Applying T-I to G_n gives F_{n+1}, 

and applying T^2-T-I to that gives 0,

so (T-I)(T^2-T-I)=(T^3-2T^2+I) annihilates G.

As before, G_n can be written in the form

A F_n + B F_{n-1} + C.

A first application:

Domino tilings of 2-by-n rectangles

Construction rule: a domino tiling of a 2-by-n rectangle

is EITHER a domino-tiling of a 2-by-(n-1) rectangle


with a vertical domino to its right

OR a domino-tiling of a 2-by-(n-2) rectangle


with a pair of horizontal dominos to its right.

Is this true for all n?

No: We need as initial conditions

that there is a unique tiling of the 2-by-0 rectangle

but NO tiling of the 2-by-(-1) rectangle.

Counting the tilings: f(-1)=0, f(0)=1, f(n)=f(n-1)+f(n-2) for all n>0.

Maple: 

f := proc(n) if (n=-1) then 0; elif (n=0) then 1;


else f(n-1)+f(n-2); fi; end;

Listing the tilings:

n=-1: {}

n= 0: {[]}

n= 1: {[V]}

n= 2: {[V,V],[L,R]}

n= 3: {[V,V,V],[L,R,V],[V,L,R]}

n= 4: {[V,V,V,V],[L,R,V,V],[V,L,R,V],[V,V,L,R],[L,R,L,R]}

Rule:

To generate the list of order n,

generate the list of order n-1 and stick a V at the end of each list;

then generate the list of order n-2 and stick L,R at the end of each.

addvert:=t->[op(t),V];

addhor:=t->[op(t),L,R];

Tilings:=proc(n) options remember;


if n=-1 then {}


elif n=0 then {[]}


else {op(map(addvert,Tilings(n-1))),

op(map(addhor,Tilings(n-2)))}


fi; end;

What about domino tilings of 3-by-n rectangles?

Joint recurrence:

For all non-negative n,

let a_n = number of domino tilings of a 3-by-2n rectangle (a_0 = 0)

and let b_n = number of domino tilings of a 3-by-(2n+1) rectangle


with a bite taken out of one corner.

a_n = 2b_{n-1} + a_{n-1}

b_n = a_n+b_{n-1}.

Initial values: a_0 = 1, a_1 = 3, a_2 = 11, a_3 = 41, ...

Initial values: b_0 = 1, b_1 = 4, b_2 = 15, ...

Approach #1: Write down generating functions for a_n and b_n.

Then the recurrence relations for the sequences

turn into algebraic relations between the generating functions.

We have two equations in two unknowns 

(two unknown formal power series),

so we can solve and then get exact formulas

for the power series.

Approach #2: Write

a_n = 2b_{n-1} + a_{n-1}

b_n = 3b_{n-1} + a_{n-1}

in matrix form

(a_n)     (  1  2  )  (a_{n-1})

(      ) = (           ) (              )

(b_n)     (  1  3  )  (b_{n-1})

and repeat this to obtain

                           n

(a_n)     (  1  2  )    (1)

(      ) = (           )   (   )

(b_n)     (  1  3  )    (1)  .

Use linear algebra to find a formula for a_n.

Approach #3 (optional):

Find a clever way to combine the recurrence relations

so as to eliminate b

and find a recurrence relation governing a alone.

If time permits: Evaluate that determinant by condensation

(preview of stuff we’ll cover later)

