Collect homework; handout solutions and new problem sets

It’s a good idea to read the solutions, even if you got the problems right.  A case in point is today’s solution set, which contains tips on writing programs in Maple.

From now on, email homework solutions to 

acotton@fas.harvard.edu
How to hand in problem set #3?

Remind students that for questions that I ask you, 

where the answer takes more than five or ten seconds,

you should be looking at the answerer, not me.

If you shouldn’t be looking at me, I’ll point my hands

at the person you should be looking at.

Motivate infrastructure of generating functions and recurrences:

the role of sequences in combinatorics.

Problem: Find a formula for the sequence 1, 2, 5, 14, 41, ...

with initial conditions f(0)=1 and f(1)=2, satisfying the recurrence

(*)
f(n+2)=4f(n+1)-3f(n) 

for all n > 1.

Using Wilf’s method, we set up a generating function 

F(x) = ... sum_{n=0}^{infty} f(n) x^n = 1 + 2x + 5x^2 + ... .

Even before we know what the initial conditions are, 

we can check that the recurrence relation gives

(1-4x+3x^2) F(x) = (1-4x+3x^2)(f(0)+f(1)x+f(2)x^2+f(3)x^3+...)

= [f(0)]+[f(1)-4f(0)]x+[f(2)-4f(1)+3f(0)]+[f(3)-4f(2)+3f(2)]+...

=some linear polynomial in x.

Conversely, any formal power series of the form 

(ax+b)/(1-4x+3x^2)

will have as its coefficients a sequence of numbers satisfying (*).

So we have a two-parameter family of solutions to (*),

and these are the only solutions.

Since the denominator 1-4x+3x^2 factors as (1-x)(1-3x),

any rational function of the form (ax+b)/(1-4x+3x^2)

can be expanded by partial fractions as A/(1-x) + B/(1-3x).

Thus the general solution to (*), when encoded as a generating


function, must be of the form

F(x) = c/(1-x) + d/(1-3x)


= c(1+x+x^2+...)+d(1+3x+9x^2+...),

so that f(n) = c + d3^n.

To solve (*) with a particular set of initial conditions,

we just solve for c and d.  E.g., with f(0)=1 and f(1)=2, we get

1=f(0) = c+d3^0=c+d

2=f(1) = c+d3^1=c+3d

c=d=1/2

Let’s Take another look from the point of view of linear algebra.

The equation (*) is LINEAR.  

That is: If f_1 and f_2 satisfy (*),

so does the sequence g = A f_1 + B f_2 

defined by g(n) = A f_1 (n) + B f_2 (n) ,

where A and B are arbitrary coefficients.

That is: the set of solutions to (*) form a VECTOR SPACE V.

V is a subspace of the space of infinite sequences of real numbers, or if we prefer the space of infinite sequences of complex numbers.

Some sample elements of V:

s=(1,1,1,1,1,...)

t=(1,3,9,27,81,...)

u=(1,0,-3,-12,-39,...)

v=(0,1,4,13,40,...)

The general solution is 

(A,B,-3A+4B,-3B+4(-3A+4B)=13B-12A,...)= Au+Bv

The space V of solutions to the recurrence (*) is 2-dimensional

even though the elements of V, viewed as sequences,

have infinitely many components

u and v form a basis for V, but so do s and t,

since u and v can be expressed in terms of s and t:

u=(3s-t)/2,

v=(t-s)/2.

So the general solution of (*) can also be written as As+Bt.

Why would we prefer to use s and t as a basis? ...

Because they’re nicer.

To solve our original problem, we seek coefficients A,B so that

f=As+Bt satisfies f(0) = 1 and f(1) = 2.

That is, A+B=1 and A+3B=2.

A=B=1/2.

f(n) = (3^n+1)/2.

We call (*) a second-order linear recurrence relation.

It can be written in the form

f(n+2)-4f(n+1)+3f(n)=0.

Because the right hand side is zero, we call it ... homogeneous.

More generally, any recurrence relation of the form

A_k f(n+k) + A_{k-1} f(n+k-1) + ... + A_0 f(n) = 0

(or anything obtained from this by shifting indices)

with A_k and A_0 both non-zero

is called a kth-order homogeneous linear recurrence relation

with constant coefficients.

There are also linear recurrence relations with non-constant coefficients that are functions of n; 

e.g., f(n)=n! satisfies f(n+1)-(n+1)f(n)=0.

We won’t treat these in this class.

By the end of this lecture, you’ll know how to solve

any recurrence relation of this form with constant coefficients,

and lots of non-homogeneous ones too.

It’s highly analogous to the theory of linear differential equations.

Let S be the space of all sequences f = (f(0),f(1),f(2),...)

(“sequence space”).

(Sometimes we’ll call f a vector, or even write it as one,

albeit with infinitely many components.)

For any sequence f, define T(f)

(also written as Tf) as the sequence whose value at n is f(n+1).

Thus

f(n+1)-3f(n)=c

can be written as

Tf-3f=c

where the right hand side is interpreted 

as the constant function with value c.

Here, as in the theory of differential equations,

we’re combining (and equating) functions.

Here T is a linear operator 

from sequence space to itself.

Let I denote the linear operator satisfying If=f for all f.

We can write the equation as Tf-3If=c.

You should think of f as a vector and T and 3I as matrices.

In fact, if you write the sequence f as an infinite column vector

with components f(0), f(1), f(2), etc. stacked vertically,

then 3I is just the infinite matrix with ... 

3’s down the (main) diagonal

and T is the infinite matrix with ...

1’s on the super-diagonal and 0’s elsewhere.

We apply the distributive property and 

We write the equation as (T-3I)f = c,

where T-3I is the infinite matrix with -3’s on the main diagonal,

1s on the super-diagonal, and 0’s elsewhere.

If we drop the idea of writing the function f as a vector

and the mapping T-3I as a matrix,

We call T-3I a linear operator on the (infinite-dimensional)

space of all sequences.

There are many linear operators on this space.

For example, the map T^2 (T composed with T) is linear,

as is T^k for any k.

Here, saying that T^k linear means

that ... (T^k)(f+g) = (T^k)f + (T^k)g for all sequences f,g

and ... (T^k)(cf) = c(T^k)f for all sequences f and all constant c.

Note that composition of linear operators

and multiplication of matrices

are essentially the same thing.

What does T-3I do to a vector f of the form f(n)=r^n? ...

It sends f to a sequence g satisfying

g(n)=(Tg)(n)-(3I)(n)=g(n+1)-3g(n)=r^{n+1}-3r^n=(r-3)r^n

=(r-3)g(n);

i.e., (T-3I)(g)=(r-3)g.

That is, g is an <fill in the blank> ... of T-3I, 

eigenfunction 

with eigenvalue r-3.

If r=1 or r=3, g is <fill in the blank> ... by T-3I.




      annihilated

Hence (T-I)(T-3I) annihilates f(n)=3^n

and (T-3I)(T-I) annihilates f(n)=1^n.

But both of these operators are equal to T^2-4T+3I.

Hence any linear combination f(n)=A3^n+B1^n

is in the < fill in the blank> of T^2-4T+3I 

  null-space 

and satisfies f(n+2)-4f(n+1)+3f(n).

T-I (also sometimes written as T-1)

is called the difference operator,

and an equation like (T^2-4T+3)f=0 

is called a difference equation.

General theorem (first draft):

Let

(*)  (a_d T^d + a_{d-1} T^{d-1} + ... + a_0 T^0) f = 0

be a homogeneous linear recurrence equation 

with constant coefficients.

Let p(t) = a_d t^d + a_{d-1} t^{d-1} + ... + a_0 ,

so that we can daringly write (*) as p(T)(f)=0.

Suppose p(t) has <leave blank> (how many? ... d) 

distinct (real or complex) roots r_1,...,r_d.

Then the general solution to (*) is of the form

f(n) = A_d r_d^n + ... A_d r_d^n.

(Proof idea: Use partial fractions decomposition.)

(Alternative, after-the-fact logic:

Verify that each primitive solution f(n) = r^n

is a solution to (*).

Then show that these d functions are linearly independent.

Hence they span the d-dimensional space of solutions to (*).)

Note that even if the terms of the sequence are integers,

the numbers r_i and A_i need not be.

We’ve already seen this with Binet’s formula for

the Fibonacci sequence (remind them what this is).

Another Example: p(t)=t^2+1, with roots i and –i.

The recurrence T^2 f + f = 0

means f(n+2)=-f(n) for all n,

with general solution a,b,-a,-b,a,b,-a,-b,...

(does this remind you of anything? ... the homework).

E.g., 2,0,-2,0,2,0,-2,0,..., given by f(n) = i^n+(-i)^n.

But what if the polynomial doesn’t have distinct roots?

Test-case: p(t)=(t-1)^2=t^2-2+1, p(T)=T^2-2T+1.

Wilf’s approach still applies:

We get a two-parameter family of solutions,

with generating functions (ax+b)/(x^2-2x+1).

Put a=-1 and b=1:

(1-x)/(1-2x+x^2) = 1/(1-x) = 1+x+x^2+...

(that’s the solution we already knew about).

To find another solution, put a=1 and b=0:

x/(1-2x+x^2) = x/(1-x)^2 = x(1-x)^{-2} = x + 2x^2 + 3x^3 + ...


(check that this is what the binomial theorem gives, too)

So our two fundamental solutions here are f(n)=1 and f(n)=n.

In general, if p(T)=(T-rI)^d, the d fundamental solutions are

the sequences f(n)=n^k r^n for k=0 through d-1.

(When r=1, these fundamental solutions are just monomials,

and the general solution is a polynomial of degree <d.)

General fact: For any polynomial p(t) of degree d,

the solutions of p(T)(f)=0 form a d-dimensional space

with basis elements of the form n^k r^n,

where r is any root of p(t)=0

and k is any non-negative integer that is less than

the multiplicity of the root r.

Special case: For p(t)=t^2-t-1, 

a good basis for solutions to p(T)(f)=0

is given by the Fibonacci sequence 1,1,2,3,5,8,...

and the shifted Fibonacci sequence 0,1,1,2,3,5,....

Or, instead of the shifted Fibonacci sequence,

one can use the Lucas sequence 1,3,4,7,11,18,...

How can we write the Lucas sequence

in terms of the Fibonacci sequence and its shift? ...

L_n = 2F_n+F_{n+1}.

Theorem: If the sequence f 

satisfies a linear recurrence relation of order d,

the functions f, Tf, ..., T^d f are linearly dependent,

and indeed, the infinitely many functions f, Tf, T^2 f, ...

span a finite-dimensional subspace of sequence space.

Conversely, if f, Tf, T^2 f, ... 

span a d-dimensional subspace of sequence space,

then the sequence f satisfies a linear recurrence relation

of order d (but no lower order).

